Cyclin-dependent kinase control of motile ciliogenesis

  1. Eszter K Vladar  Is a corresponding author
  2. Miranda B Stratton
  3. Maxwell L Saal
  4. Glicella Salazar-De Simone
  5. Xiangyuan Wang
  6. Debra Wolgemuth
  7. Tim Stearns
  8. Jeffrey D Axelrod
  1. University of Colorado School of Medicine, United States
  2. Stanford University, United States
  3. Columbia University Medical Center, United States
  4. Stanford University School of Medicine, United States

Abstract

Cycling cells maintain centriole number at precisely two per cell in part by limiting their duplication to S phase under the control of the cell cycle machinery. In contrast, postmitotic multiciliated cells (MCCs) uncouple centriole assembly from cell cycle progression and produce hundreds of centrioles in the absence of DNA replication to serve as basal bodies for motile cilia. Although some cell cycle regulators have previously been implicated in motile ciliogenesis, how the cell cycle machinery is employed to amplify centrioles is unclear. We use transgenic mice and primary airway epithelial cell culture to show that Cdk2, the kinase responsible for the G1 to S phase transition, is also required in MCCs to initiate motile ciliogenesis. While Cdk2 is coupled with Cyclins E and A2 during cell division, Cyclin A1 is required during ciliogenesis, contributing to an alternative regulatory landscape that facilitates centriole amplification without DNA replication.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eszter K Vladar

    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    eszter.vladar@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4160-8894
  2. Miranda B Stratton

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maxwell L Saal

    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Glicella Salazar-De Simone

    Center for Radiological Research, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiangyuan Wang

    Department of Genetics and Development, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Debra Wolgemuth

    Department of Genetics and Development, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tim Stearns

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0671-6582
  8. Jeffrey D Axelrod

    Department of Pathology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01GM052022)

  • Tim Stearns

National Institutes of Health (R01GM121424)

  • Tim Stearns

National Institutes of Health (R01GM098582)

  • Jeffrey D Axelrod

National Institutes of Health (1R01HD034915)

  • Debra Wolgemuth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were approved by the Institutional Animal Care and Use Committee of Stanford University School of Medicine (#17926) in accordance with established guidelines for animal care.

Copyright

© 2018, Vladar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,695
    views
  • 533
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eszter K Vladar
  2. Miranda B Stratton
  3. Maxwell L Saal
  4. Glicella Salazar-De Simone
  5. Xiangyuan Wang
  6. Debra Wolgemuth
  7. Tim Stearns
  8. Jeffrey D Axelrod
(2018)
Cyclin-dependent kinase control of motile ciliogenesis
eLife 7:e36375.
https://doi.org/10.7554/eLife.36375

Share this article

https://doi.org/10.7554/eLife.36375

Further reading

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.