Cyclin-dependent kinase control of motile ciliogenesis

  1. Eszter K Vladar  Is a corresponding author
  2. Miranda B Stratton
  3. Maxwell L Saal
  4. Glicella Salazar-De Simone
  5. Xiangyuan Wang
  6. Debra Wolgemuth
  7. Tim Stearns
  8. Jeffrey D Axelrod
  1. University of Colorado School of Medicine, United States
  2. Stanford University, United States
  3. Columbia University Medical Center, United States
  4. Stanford University School of Medicine, United States

Abstract

Cycling cells maintain centriole number at precisely two per cell in part by limiting their duplication to S phase under the control of the cell cycle machinery. In contrast, postmitotic multiciliated cells (MCCs) uncouple centriole assembly from cell cycle progression and produce hundreds of centrioles in the absence of DNA replication to serve as basal bodies for motile cilia. Although some cell cycle regulators have previously been implicated in motile ciliogenesis, how the cell cycle machinery is employed to amplify centrioles is unclear. We use transgenic mice and primary airway epithelial cell culture to show that Cdk2, the kinase responsible for the G1 to S phase transition, is also required in MCCs to initiate motile ciliogenesis. While Cdk2 is coupled with Cyclins E and A2 during cell division, Cyclin A1 is required during ciliogenesis, contributing to an alternative regulatory landscape that facilitates centriole amplification without DNA replication.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eszter K Vladar

    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    eszter.vladar@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4160-8894
  2. Miranda B Stratton

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maxwell L Saal

    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Glicella Salazar-De Simone

    Center for Radiological Research, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiangyuan Wang

    Department of Genetics and Development, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Debra Wolgemuth

    Department of Genetics and Development, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tim Stearns

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0671-6582
  8. Jeffrey D Axelrod

    Department of Pathology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01GM052022)

  • Tim Stearns

National Institutes of Health (R01GM121424)

  • Tim Stearns

National Institutes of Health (R01GM098582)

  • Jeffrey D Axelrod

National Institutes of Health (1R01HD034915)

  • Debra Wolgemuth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were approved by the Institutional Animal Care and Use Committee of Stanford University School of Medicine (#17926) in accordance with established guidelines for animal care.

Copyright

© 2018, Vladar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,714
    views
  • 535
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eszter K Vladar
  2. Miranda B Stratton
  3. Maxwell L Saal
  4. Glicella Salazar-De Simone
  5. Xiangyuan Wang
  6. Debra Wolgemuth
  7. Tim Stearns
  8. Jeffrey D Axelrod
(2018)
Cyclin-dependent kinase control of motile ciliogenesis
eLife 7:e36375.
https://doi.org/10.7554/eLife.36375

Share this article

https://doi.org/10.7554/eLife.36375

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.