Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis

  1. Neus Martínez-Abadías  Is a corresponding author
  2. Roger Mateu Estivill
  3. Jaume Sastre Tomas
  4. Susan Motch Perrine
  5. Melissa Yoon
  6. Alex Robert-Moreno
  7. Jim Swoger
  8. Lucia Russo
  9. Kazuhiko Kawasaki
  10. Joan Richtsmeier
  11. James Sharpe  Is a corresponding author
  1. The Barcelona Institute for Science and Technology, Spain
  2. Universitat de Barcelona, Spain
  3. Universitat de les Illes Balears, Spain
  4. Pennsylvania State University, United States

Abstract

The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying geometric morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of the Fgfr2 mutation that were associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.

Data availability

Our dataset has been deposited to Dryad (doi:10.5061/dryad.8h646s0)

The following data sets were generated

Article and author information

Author details

  1. Neus Martínez-Abadías

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    nieves.martinez@embl.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3061-2123
  2. Roger Mateu Estivill

    Universitat de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4728-2239
  3. Jaume Sastre Tomas

    Universitat de les Illes Balears, Palma de Mallorca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9053-2390
  4. Susan Motch Perrine

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melissa Yoon

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Robert-Moreno

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9042-1316
  7. Jim Swoger

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3805-0073
  8. Lucia Russo

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Kazuhiko Kawasaki

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joan Richtsmeier

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Sharpe

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    james.sharpe@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1434-9743

Funding

European Commission (FP7‐PEOPLE‐2012‐ 597 IIF 327382)

  • Neus Martínez-Abadías

National Institute for Health Research (NICHD P01HD078233)

  • Joan Richtsmeier

National Institute for Health Research (NIDCR R01DE02298)

  • Joan Richtsmeier

Burroughs Wellcome Fund (2013 Collaborative Research Travel Grant)

  • Joan Richtsmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experiments were performed in compliance with the animal welfare guidelines approved by the Pennsylvania State University Animal Care and Use Committees (IACUC46558, IBC46590).

Copyright

© 2018, Martínez-Abadías et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,584
    views
  • 427
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neus Martínez-Abadías
  2. Roger Mateu Estivill
  3. Jaume Sastre Tomas
  4. Susan Motch Perrine
  5. Melissa Yoon
  6. Alex Robert-Moreno
  7. Jim Swoger
  8. Lucia Russo
  9. Kazuhiko Kawasaki
  10. Joan Richtsmeier
  11. James Sharpe
(2018)
Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis
eLife 7:e36405.
https://doi.org/10.7554/eLife.36405

Share this article

https://doi.org/10.7554/eLife.36405

Further reading

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.

    1. Developmental Biology
    Valeria Sulzyk, Ludmila Curci ... Patricia S Cuasnicu
    Research Article

    Numerous reports showed that the epididymis plays key roles in the acquisition of sperm fertilizing ability but its contribution to embryo development remains less understood. Female mice mated with males with simultaneous mutations in Crisp1 and Crisp3 genes exhibited normal in vivo fertilization but impaired embryo development. In this work, we found that this phenotype was not due to delayed fertilization, and it was observed in eggs fertilized by epididymal sperm either in vivo or in vitro. Of note, eggs fertilized in vitro by mutant sperm displayed impaired meiotic resumption unrelated to Ca2+ oscillations defects during egg activation, supporting potential sperm DNA defects. Interestingly, cauda but not caput epididymal mutant sperm exhibited increased DNA fragmentation, revealing that DNA integrity defects appear during epididymal transit. Moreover, exposing control sperm to mutant epididymal fluid or to Ca2+-supplemented control fluid significantly increased DNA fragmentation. This, together with the higher intracellular Ca2+ levels detected in mutant sperm, supports a dysregulation in Ca2+ homeostasis within the epididymis and sperm as the main factor responsible for embryo development failure. These findings highlight the contribution of the epididymis beyond fertilization and identify CRISP1 and CRISP3 as novel factors essential for sperm DNA integrity and early embryo development.