Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis

  1. Neus Martínez-Abadías  Is a corresponding author
  2. Roger Mateu Estivill
  3. Jaume Sastre Tomas
  4. Susan Motch Perrine
  5. Melissa Yoon
  6. Alex Robert-Moreno
  7. Jim Swoger
  8. Lucia Russo
  9. Kazuhiko Kawasaki
  10. Joan Richtsmeier
  11. James Sharpe  Is a corresponding author
  1. The Barcelona Institute for Science and Technology, Spain
  2. Universitat de Barcelona, Spain
  3. Universitat de les Illes Balears, Spain
  4. Pennsylvania State University, United States

Abstract

The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying geometric morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of the Fgfr2 mutation that were associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.

Data availability

Our dataset has been deposited to Dryad (doi:10.5061/dryad.8h646s0)

The following data sets were generated

Article and author information

Author details

  1. Neus Martínez-Abadías

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    nieves.martinez@embl.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3061-2123
  2. Roger Mateu Estivill

    Universitat de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4728-2239
  3. Jaume Sastre Tomas

    Universitat de les Illes Balears, Palma de Mallorca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9053-2390
  4. Susan Motch Perrine

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melissa Yoon

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Robert-Moreno

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9042-1316
  7. Jim Swoger

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3805-0073
  8. Lucia Russo

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Kazuhiko Kawasaki

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joan Richtsmeier

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Sharpe

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    james.sharpe@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1434-9743

Funding

European Commission (FP7‐PEOPLE‐2012‐ 597 IIF 327382)

  • Neus Martínez-Abadías

National Institute for Health Research (NICHD P01HD078233)

  • Joan Richtsmeier

National Institute for Health Research (NIDCR R01DE02298)

  • Joan Richtsmeier

Burroughs Wellcome Fund (2013 Collaborative Research Travel Grant)

  • Joan Richtsmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experiments were performed in compliance with the animal welfare guidelines approved by the Pennsylvania State University Animal Care and Use Committees (IACUC46558, IBC46590).

Copyright

© 2018, Martínez-Abadías et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,583
    views
  • 427
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neus Martínez-Abadías
  2. Roger Mateu Estivill
  3. Jaume Sastre Tomas
  4. Susan Motch Perrine
  5. Melissa Yoon
  6. Alex Robert-Moreno
  7. Jim Swoger
  8. Lucia Russo
  9. Kazuhiko Kawasaki
  10. Joan Richtsmeier
  11. James Sharpe
(2018)
Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis
eLife 7:e36405.
https://doi.org/10.7554/eLife.36405

Share this article

https://doi.org/10.7554/eLife.36405

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.