Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis

  1. Neus Martínez-Abadías  Is a corresponding author
  2. Roger Mateu Estivill
  3. Jaume Sastre Tomas
  4. Susan Motch Perrine
  5. Melissa Yoon
  6. Alex Robert-Moreno
  7. Jim Swoger
  8. Lucia Russo
  9. Kazuhiko Kawasaki
  10. Joan Richtsmeier
  11. James Sharpe  Is a corresponding author
  1. The Barcelona Institute for Science and Technology, Spain
  2. Universitat de Barcelona, Spain
  3. Universitat de les Illes Balears, Spain
  4. Pennsylvania State University, United States

Abstract

The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying geometric morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of the Fgfr2 mutation that were associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.

Data availability

Our dataset has been deposited to Dryad (doi:10.5061/dryad.8h646s0)

The following data sets were generated

Article and author information

Author details

  1. Neus Martínez-Abadías

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    nieves.martinez@embl.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3061-2123
  2. Roger Mateu Estivill

    Universitat de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4728-2239
  3. Jaume Sastre Tomas

    Universitat de les Illes Balears, Palma de Mallorca, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9053-2390
  4. Susan Motch Perrine

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melissa Yoon

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Robert-Moreno

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9042-1316
  7. Jim Swoger

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3805-0073
  8. Lucia Russo

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Kazuhiko Kawasaki

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joan Richtsmeier

    Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Sharpe

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    james.sharpe@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1434-9743

Funding

European Commission (FP7‐PEOPLE‐2012‐ 597 IIF 327382)

  • Neus Martínez-Abadías

National Institute for Health Research (NICHD P01HD078233)

  • Joan Richtsmeier

National Institute for Health Research (NIDCR R01DE02298)

  • Joan Richtsmeier

Burroughs Wellcome Fund (2013 Collaborative Research Travel Grant)

  • Joan Richtsmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experiments were performed in compliance with the animal welfare guidelines approved by the Pennsylvania State University Animal Care and Use Committees (IACUC46558, IBC46590).

Copyright

© 2018, Martínez-Abadías et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,579
    views
  • 427
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neus Martínez-Abadías
  2. Roger Mateu Estivill
  3. Jaume Sastre Tomas
  4. Susan Motch Perrine
  5. Melissa Yoon
  6. Alex Robert-Moreno
  7. Jim Swoger
  8. Lucia Russo
  9. Kazuhiko Kawasaki
  10. Joan Richtsmeier
  11. James Sharpe
(2018)
Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis
eLife 7:e36405.
https://doi.org/10.7554/eLife.36405

Share this article

https://doi.org/10.7554/eLife.36405

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.