Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton

Abstract

Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 3 and 4 and Figure 2-figure supplement 2.

Article and author information

Author details

  1. Csaba Verasztó

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6295-7148
  2. Martin Gühmann

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4330-0754
  3. Huiyong Jia

    Department of Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vinoth Babu Veedin Rajan

    Max F Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2430-7395
  5. Luis A Bezares-Calderón

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Cristina Piñeiro-Lopez

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Nadine Randle

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7817-4137
  8. Réza Shahidi

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nico K Michiels

    Max F Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Shozo Yokoyama

    Department of Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kristin Tessmar

    Max F Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Gáspár Jékely

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    g.jekely@exeter.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8496-9836

Funding

Deutsche Forschungsgemeinschaft

  • Luis A Bezares-Calderón

National Institutes of Health

  • Vinoth Babu Veedin Rajan
  • Shozo Yokoyama

Max-Planck-Gesellschaft (Open-access funding)

  • Gáspár Jékely

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Verasztó et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,921
    views
  • 493
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Csaba Verasztó
  2. Martin Gühmann
  3. Huiyong Jia
  4. Vinoth Babu Veedin Rajan
  5. Luis A Bezares-Calderón
  6. Cristina Piñeiro-Lopez
  7. Nadine Randle
  8. Réza Shahidi
  9. Nico K Michiels
  10. Shozo Yokoyama
  11. Kristin Tessmar
  12. Gáspár Jékely
(2018)
Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton
eLife 7:e36440.
https://doi.org/10.7554/eLife.36440

Share this article

https://doi.org/10.7554/eLife.36440

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.