Convergence between the microcosms of Southeast Asian and North American pitcher plants

  1. Leonora S Bittleston  Is a corresponding author
  2. Charles J Wolock
  3. Bakhtiar E Yahya
  4. Xin Yue Chan
  5. Kok Gan Chan
  6. Naomi E Pierce
  7. Anne Pringle
  1. Harvard University, United States
  2. Universiti Malaysia Sabah, Malaysia
  3. University of Malaya, Malaysia
  4. University of Wisconsin-Madison, United States

Abstract

The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.

Data availability

Amplicon sequencing data have been deposited as NCBI BioProject PRJNA448553: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA448553. Metagenomic sequencing data have been deposited in MG-RAST: http://www.mg-rast.org/linkin.cgi?project=mgp15454. The source code and data for Figures 1-5 and for Tables S3 and S4 have been deposited in a Harvard Dataverse repository: https://doi.org/10.7910/DVN/QYUBN2.

The following data sets were generated

Article and author information

Author details

  1. Leonora S Bittleston

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    leobit@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4007-5405
  2. Charles J Wolock

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bakhtiar E Yahya

    Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  4. Xin Yue Chan

    Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  5. Kok Gan Chan

    Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  6. Naomi E Pierce

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne Pringle

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1526-6739

Funding

National Science Foundation (NSF Graduate Fellowship and Doctoral Dissertation Improvement Grant DEB-1400982)

  • Leonora S Bittleston

Templeton Foundation (Foundational Questions In Evolutionary Biology)

  • Naomi E Pierce
  • Anne Pringle

Harvard University Museum of Comparative Zoology Putnam Expedition Grant (Putnam Grant)

  • Leonora S Bittleston

National Geographic Society

  • Naomi E Pierce

University of Malaya High Impact Research Grant (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1)

  • Kok Gan Chan

National Science Foundation (SES-0750480)

  • Naomi E Pierce

University of Malaya High Impact Research Grant (H-50001-A000027)

  • Kok Gan Chan

University of Malaya High Impact Research Grant (A-000001-50001)

  • Kok Gan Chan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Bittleston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,845
    views
  • 422
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leonora S Bittleston
  2. Charles J Wolock
  3. Bakhtiar E Yahya
  4. Xin Yue Chan
  5. Kok Gan Chan
  6. Naomi E Pierce
  7. Anne Pringle
(2018)
Convergence between the microcosms of Southeast Asian and North American pitcher plants
eLife 7:e36741.
https://doi.org/10.7554/eLife.36741

Share this article

https://doi.org/10.7554/eLife.36741

Further reading

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.

    1. Ecology
    2. Neuroscience
    Ralph E Peterson, Aman Choudhri ... Dan H Sanes
    Research Article

    In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.