Cerebellar involvement in an evidence-accumulation decision-making task

  1. Ben Deverett  Is a corresponding author
  2. Sue Ann Koay
  3. Marlies Oostland
  4. Samuel S-H Wang  Is a corresponding author
  1. Princeton University, United States

Abstract

To make successful evidence-based decisions, the brain must rapidly and accurately transform sensory inputs into specific goal-directed behaviors. Most experimental work on this subject has focused on forebrain mechanisms. Using a novel evidence-accumulation task for mice, we performed recording and perturbation studies of crus I of the lateral posterior cerebellum, which communicates bidirectionally with numerous forebrain regions. Cerebellar inactivation led to a reduction in the fraction of correct trials. Using two-photon fluorescence imaging of calcium, we found that Purkinje cell somatic activity contained choice/evidence-related information. Decision errors were represented by dendritic calcium spikes, which in other contexts are known to drive cerebellar plasticity. We propose that cerebellar circuitry may contribute to computations that support accurate performance in this perceptual decision-making task.

Data availability

The data for the main figures are available via the GitHub repository https://github.com/wanglabprinceton/accumulating_puffs. The complete raw data are available from the authors upon request.

Article and author information

Author details

  1. Ben Deverett

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    deverett@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3119-7649
  2. Sue Ann Koay

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlies Oostland

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samuel S-H Wang

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    sswang@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0490-9786

Funding

National Institute of Mental Health (MH115577)

  • Ben Deverett

National Institute of Neurological Disorders and Stroke (NS045193)

  • Samuel S-H Wang

Nancy Lurie Marks Family Foundation

  • Samuel S-H Wang

National Institute of Neurological Disorders and Stroke (NS090541)

  • Ben Deverett
  • Sue Ann Koay
  • Samuel S-H Wang

National Institute of Neurological Disorders and Stroke (NS104648)

  • Ben Deverett
  • Sue Ann Koay
  • Samuel S-H Wang

National Institute of Mental Health (MH115750)

  • Samuel S-H Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were approved by the Princeton University Institutional Animal Care and Use Committee (protocol #1943-16) and performed in accordance with the animal welfare guidelines of the National Institutes of Health. All surgery was performed under isoflurane anesthesia and suffering was minimized in all ways possible.

Copyright

© 2018, Deverett et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,756
    views
  • 755
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben Deverett
  2. Sue Ann Koay
  3. Marlies Oostland
  4. Samuel S-H Wang
(2018)
Cerebellar involvement in an evidence-accumulation decision-making task
eLife 7:e36781.
https://doi.org/10.7554/eLife.36781

Share this article

https://doi.org/10.7554/eLife.36781

Further reading

    1. Neuroscience
    Mighten C Yip, Mercedes M Gonzalez ... Craig R Forest
    Tools and Resources

    Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can ‘walk’ across the mouse brain slice, termed ‘patch-walking.’ We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e. 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding three connections. Patch-walking yields 80–92% more probed connections, for experiments with 10–100 cells than the traditional synaptic connection searching method.

    1. Neuroscience
    Mitchell P Morton, Sachira Denagamage ... Anirvan S Nandy
    Research Article

    Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral outcomes despite similarities in sensory input. We sought to understand how fluctuations in behavioral state and cortical layer and cell class-specific neural activity underlie this perceptual variability. We analyzed physiological measurements of state and laminar electrophysiological activity in visual area V4 while monkeys were rewarded for correctly reporting a stimulus change at perceptual threshold. Hit trials were characterized by a behavioral state with heightened arousal, greater eye position stability, and enhanced decoding performance of stimulus identity from neural activity. Target stimuli evoked stronger responses in V4 in hit trials, and excitatory neurons in the superficial layers, the primary feed-forward output of the cortical column, exhibited lower variability. Feed-forward interlaminar population correlations were stronger on hits. Hit trials were further characterized by greater synchrony between the output layers of the cortex during spontaneous activity, while the stimulus-evoked period showed elevated synchrony in the feed-forward pathway. Taken together, these results suggest that a state of elevated arousal and stable retinal images allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.