Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation

  1. Swarnava Chaudhuri
  2. Liping Li
  3. Matthew Zimmerman
  4. Yuemeng Chen
  5. Yu-Xiang Chen
  6. Melody N Toosky
  7. Michelle Gardner
  8. Miaomiao Pan
  9. Yang-Yang Li
  10. Qingwen Kawaji
  11. Jun-Hao Zhu
  12. Hong-Wei Su
  13. Amanda J Martinot
  14. Eric J Rubin
  15. Veronique Anne Dartois  Is a corresponding author
  16. Babak Javid  Is a corresponding author
  1. Tsinghua University School of Medicine, China
  2. Rutgers, The State University of New Jersey, United States
  3. Harvard TH Chan School of Public Health, United States
  4. Harvard Medical School, United States

Abstract

Most bacteria use an indirect pathway to generate aminoacylated glutamine and/or asparagine tRNAs. Clinical isolates of Mycobacterium tuberculosis with increased rates of error in gene translation (mistranslation) involving the indirect tRNA-aminoacylation pathway have increased tolerance to the first-line antibiotic rifampicin. Here, we identify that the aminoglycoside kasugamycin can specifically decrease mistranslation due to the indirect tRNA pathway. Kasugamycin but not the aminoglycoside streptomycin, can limit emergence of rifampicin resistance in vitro and increases mycobacterial susceptibility to rifampicin both in vitro and in a murine model of infection. Moreover, despite parenteral administration of kasugamycin being unable to achieve the in vitro minimum inhibitory concentration, kasugamycin alone was able to significantly restrict growth of Mycobacterium tuberculosis in mice. These data suggest that pharmacologically reducing mistranslation may be a novel mechanism for targeting bacterial adaptation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Swarnava Chaudhuri

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Liping Li

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Zimmerman

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuemeng Chen

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu-Xiang Chen

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Melody N Toosky

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Michelle Gardner

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Miaomiao Pan

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yang-Yang Li

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Qingwen Kawaji

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Jun-Hao Zhu

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Hong-Wei Su

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Amanda J Martinot

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Eric J Rubin

    Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5120-962X
  15. Veronique Anne Dartois

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    For correspondence
    veronique.dartois@rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9470-5009
  16. Babak Javid

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    For correspondence
    bjavid@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6354-6305

Funding

Bill and Melinda Gates Foundation (OPP1109789)

  • Babak Javid

Wellcome (207487/B/17/Z)

  • Babak Javid

National Natural Science Foundation of China (31570129)

  • Babak Javid

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse infection and treatment experiments were approved by the Institutional Animal Care and Use committee of Rutgers University and mouse toxicity studies were approved by the Institutional Animal Care and Use Committee of Tsinghua University under protocol number 17-BJ2.

Copyright

© 2018, Chaudhuri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,780
    views
  • 434
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swarnava Chaudhuri
  2. Liping Li
  3. Matthew Zimmerman
  4. Yuemeng Chen
  5. Yu-Xiang Chen
  6. Melody N Toosky
  7. Michelle Gardner
  8. Miaomiao Pan
  9. Yang-Yang Li
  10. Qingwen Kawaji
  11. Jun-Hao Zhu
  12. Hong-Wei Su
  13. Amanda J Martinot
  14. Eric J Rubin
  15. Veronique Anne Dartois
  16. Babak Javid
(2018)
Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation
eLife 7:e36782.
https://doi.org/10.7554/eLife.36782

Share this article

https://doi.org/10.7554/eLife.36782

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Chen, Ruizhi Yang ... Zhao Shan
    Research Article

    The balanced gut microbiota in intestinal mucus layer plays an instrumental role in the health of the host. However, the mechanisms by which the host regulates microbial communities in the mucus layer remain largely unknown. Here, we discovered that the host regulates bacterial colonization in the gut mucus layer by producing a protein called Chitinase 3-like protein 1 (Chi3l1). Intestinal epithelial cells are stimulated by the gut microbiota to express Chi3l1. Once expressed, Chi3l1 is secreted into the mucus layer where it interacts with the gut microbiota, specifically through a component of bacterial cell walls called peptidoglycan. This interaction between Chi3l1 and bacteria is beneficial for the colonization of bacteria in the mucus, particularly for Gram-positive bacteria like Lactobacillus. Moreover, a deficiency of Chi3l1 leads to an imbalance in the gut microbiota, which exacerbates colitis induced by dextran sodium sulfate. By performing fecal microbiota transplantation from Villin-cre mice or replenishing Lactobacillus in IECChil1 mice, we were able to restore their colitis to the same level as that of Villin-cre mice. In summary, this study shows a ‘scaffold model’ for microbiota homeostasis by interaction between intestinal Chi3l1 and bacteria cell wall interaction, and it also highlights that an unbalanced gut microbiota in the intestinal mucus contributes to the development of colitis.

    1. Microbiology and Infectious Disease
    Nicholas J Hathaway, Isaac E Kim ... Jeffrey A Bailey
    Research Article

    Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13–11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.