Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation

  1. Swarnava Chaudhuri
  2. Liping Li
  3. Matthew Zimmerman
  4. Yuemeng Chen
  5. Yu-Xiang Chen
  6. Melody N Toosky
  7. Michelle Gardner
  8. Miaomiao Pan
  9. Yang-Yang Li
  10. Qingwen Kawaji
  11. Jun-Hao Zhu
  12. Hong-Wei Su
  13. Amanda J Martinot
  14. Eric J Rubin
  15. Veronique Anne Dartois  Is a corresponding author
  16. Babak Javid  Is a corresponding author
  1. Tsinghua University School of Medicine, China
  2. Rutgers, The State University of New Jersey, United States
  3. Harvard TH Chan School of Public Health, United States
  4. Harvard Medical School, United States

Abstract

Most bacteria use an indirect pathway to generate aminoacylated glutamine and/or asparagine tRNAs. Clinical isolates of Mycobacterium tuberculosis with increased rates of error in gene translation (mistranslation) involving the indirect tRNA-aminoacylation pathway have increased tolerance to the first-line antibiotic rifampicin. Here, we identify that the aminoglycoside kasugamycin can specifically decrease mistranslation due to the indirect tRNA pathway. Kasugamycin but not the aminoglycoside streptomycin, can limit emergence of rifampicin resistance in vitro and increases mycobacterial susceptibility to rifampicin both in vitro and in a murine model of infection. Moreover, despite parenteral administration of kasugamycin being unable to achieve the in vitro minimum inhibitory concentration, kasugamycin alone was able to significantly restrict growth of Mycobacterium tuberculosis in mice. These data suggest that pharmacologically reducing mistranslation may be a novel mechanism for targeting bacterial adaptation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Swarnava Chaudhuri

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Liping Li

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Zimmerman

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuemeng Chen

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu-Xiang Chen

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Melody N Toosky

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Michelle Gardner

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Miaomiao Pan

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yang-Yang Li

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Qingwen Kawaji

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Jun-Hao Zhu

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Hong-Wei Su

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Amanda J Martinot

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Eric J Rubin

    Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5120-962X
  15. Veronique Anne Dartois

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    For correspondence
    veronique.dartois@rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9470-5009
  16. Babak Javid

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    For correspondence
    bjavid@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6354-6305

Funding

Bill and Melinda Gates Foundation (OPP1109789)

  • Babak Javid

Wellcome (207487/B/17/Z)

  • Babak Javid

National Natural Science Foundation of China (31570129)

  • Babak Javid

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse infection and treatment experiments were approved by the Institutional Animal Care and Use committee of Rutgers University and mouse toxicity studies were approved by the Institutional Animal Care and Use Committee of Tsinghua University under protocol number 17-BJ2.

Copyright

© 2018, Chaudhuri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,815
    views
  • 439
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swarnava Chaudhuri
  2. Liping Li
  3. Matthew Zimmerman
  4. Yuemeng Chen
  5. Yu-Xiang Chen
  6. Melody N Toosky
  7. Michelle Gardner
  8. Miaomiao Pan
  9. Yang-Yang Li
  10. Qingwen Kawaji
  11. Jun-Hao Zhu
  12. Hong-Wei Su
  13. Amanda J Martinot
  14. Eric J Rubin
  15. Veronique Anne Dartois
  16. Babak Javid
(2018)
Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation
eLife 7:e36782.
https://doi.org/10.7554/eLife.36782

Share this article

https://doi.org/10.7554/eLife.36782

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Amanda Mixon Blackwell, Yasaman Jami-Alahmadi ... Paul A Sigala
    Research Article

    Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.