Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation

  1. Swarnava Chaudhuri
  2. Liping Li
  3. Matthew Zimmerman
  4. Yuemeng Chen
  5. Yu-Xiang Chen
  6. Melody N Toosky
  7. Michelle Gardner
  8. Miaomiao Pan
  9. Yang-Yang Li
  10. Qingwen Kawaji
  11. Jun-Hao Zhu
  12. Hong-Wei Su
  13. Amanda J Martinot
  14. Eric J Rubin
  15. Veronique Anne Dartois  Is a corresponding author
  16. Babak Javid  Is a corresponding author
  1. Tsinghua University School of Medicine, China
  2. Rutgers, The State University of New Jersey, United States
  3. Harvard TH Chan School of Public Health, United States
  4. Harvard Medical School, United States

Abstract

Most bacteria use an indirect pathway to generate aminoacylated glutamine and/or asparagine tRNAs. Clinical isolates of Mycobacterium tuberculosis with increased rates of error in gene translation (mistranslation) involving the indirect tRNA-aminoacylation pathway have increased tolerance to the first-line antibiotic rifampicin. Here, we identify that the aminoglycoside kasugamycin can specifically decrease mistranslation due to the indirect tRNA pathway. Kasugamycin but not the aminoglycoside streptomycin, can limit emergence of rifampicin resistance in vitro and increases mycobacterial susceptibility to rifampicin both in vitro and in a murine model of infection. Moreover, despite parenteral administration of kasugamycin being unable to achieve the in vitro minimum inhibitory concentration, kasugamycin alone was able to significantly restrict growth of Mycobacterium tuberculosis in mice. These data suggest that pharmacologically reducing mistranslation may be a novel mechanism for targeting bacterial adaptation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Swarnava Chaudhuri

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Liping Li

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Zimmerman

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuemeng Chen

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu-Xiang Chen

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Melody N Toosky

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Michelle Gardner

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Miaomiao Pan

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yang-Yang Li

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Qingwen Kawaji

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Jun-Hao Zhu

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Hong-Wei Su

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Amanda J Martinot

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Eric J Rubin

    Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5120-962X
  15. Veronique Anne Dartois

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    For correspondence
    veronique.dartois@rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9470-5009
  16. Babak Javid

    Centre for Global Health and Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
    For correspondence
    bjavid@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6354-6305

Funding

Bill and Melinda Gates Foundation (OPP1109789)

  • Babak Javid

Wellcome (207487/B/17/Z)

  • Babak Javid

National Natural Science Foundation of China (31570129)

  • Babak Javid

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse infection and treatment experiments were approved by the Institutional Animal Care and Use committee of Rutgers University and mouse toxicity studies were approved by the Institutional Animal Care and Use Committee of Tsinghua University under protocol number 17-BJ2.

Copyright

© 2018, Chaudhuri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,832
    views
  • 441
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swarnava Chaudhuri
  2. Liping Li
  3. Matthew Zimmerman
  4. Yuemeng Chen
  5. Yu-Xiang Chen
  6. Melody N Toosky
  7. Michelle Gardner
  8. Miaomiao Pan
  9. Yang-Yang Li
  10. Qingwen Kawaji
  11. Jun-Hao Zhu
  12. Hong-Wei Su
  13. Amanda J Martinot
  14. Eric J Rubin
  15. Veronique Anne Dartois
  16. Babak Javid
(2018)
Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation
eLife 7:e36782.
https://doi.org/10.7554/eLife.36782

Share this article

https://doi.org/10.7554/eLife.36782

Further reading

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article Updated

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.