Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates

  1. Benjamin Mattes
  2. Yonglong Dang
  3. Gediminas Greicius
  4. Lilian Tamara Kaufmann
  5. Benedikt Prunsche
  6. Jakob Rosenbauer
  7. Johannes Stegmaier
  8. Ralf Mikut
  9. Suat Özbek
  10. Gerd Ulrich Nienhaus
  11. Alexander Schug
  12. David M Virshup
  13. Steffen Scholpp  Is a corresponding author
  1. University of Exeter, United Kingdom
  2. Karlsruhe Institute of Technology, Germany
  3. Duke-NUS Medical School, Singapore
  4. University Hospital Heidelberg, Germany
  5. John von Neumann Institute for Computing, Germany
  6. University of Heidelberg, Germany

Abstract

Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/PCP autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/β-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 gets activated. Ror2/PCP signaling leads to induction of cytonemes, which mediate transport of Wnt8a to neighboring cells. In the Wnt receiving cells, Wnt8a on cytonemes triggers Wnt/β-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, the murine intestinal crypt, and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates.

Data availability

All of the data supporting this paper is available via the Dryad repository (https://dx.doi.org/10.5061/dryad.38q5pc1)

The following data sets were generated

Article and author information

Author details

  1. Benjamin Mattes

    Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5286-9347
  2. Yonglong Dang

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gediminas Greicius

    Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Lilian Tamara Kaufmann

    Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Benedikt Prunsche

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jakob Rosenbauer

    Jülich Supercomputing Centre, Forschungszentrum Jülich, John von Neumann Institute for Computing, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Stegmaier

    Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-3759
  8. Ralf Mikut

    Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Suat Özbek

    Centre of Organismal Studies, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gerd Ulrich Nienhaus

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5027-3192
  11. Alexander Schug

    Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. David M Virshup

    Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6976-850X
  13. Steffen Scholpp

    Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
    For correspondence
    s.scholpp@exeter.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4903-9657

Funding

Living Systems Institute (Start-up)

  • Steffen Scholpp

Boehringer Ingelheim Fonds (Exploration)

  • Steffen Scholpp

Deutsche Forschungsgemeinschaft (Scho847-5)

  • Steffen Scholpp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Mattes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,286
    views
  • 1,229
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Mattes
  2. Yonglong Dang
  3. Gediminas Greicius
  4. Lilian Tamara Kaufmann
  5. Benedikt Prunsche
  6. Jakob Rosenbauer
  7. Johannes Stegmaier
  8. Ralf Mikut
  9. Suat Özbek
  10. Gerd Ulrich Nienhaus
  11. Alexander Schug
  12. David M Virshup
  13. Steffen Scholpp
(2018)
Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates
eLife 7:e36953.
https://doi.org/10.7554/eLife.36953

Share this article

https://doi.org/10.7554/eLife.36953

Further reading

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.