Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates

  1. Benjamin Mattes
  2. Yonglong Dang
  3. Gediminas Greicius
  4. Lilian Tamara Kaufmann
  5. Benedikt Prunsche
  6. Jakob Rosenbauer
  7. Johannes Stegmaier
  8. Ralf Mikut
  9. Suat Özbek
  10. Gerd Ulrich Nienhaus
  11. Alexander Schug
  12. David M Virshup
  13. Steffen Scholpp  Is a corresponding author
  1. University of Exeter, United Kingdom
  2. Karlsruhe Institute of Technology, Germany
  3. Duke-NUS Medical School, Singapore
  4. University Hospital Heidelberg, Germany
  5. John von Neumann Institute for Computing, Germany
  6. University of Heidelberg, Germany

Abstract

Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/PCP autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/β-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 gets activated. Ror2/PCP signaling leads to induction of cytonemes, which mediate transport of Wnt8a to neighboring cells. In the Wnt receiving cells, Wnt8a on cytonemes triggers Wnt/β-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, the murine intestinal crypt, and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates.

Data availability

All of the data supporting this paper is available via the Dryad repository (https://dx.doi.org/10.5061/dryad.38q5pc1)

The following data sets were generated

Article and author information

Author details

  1. Benjamin Mattes

    Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5286-9347
  2. Yonglong Dang

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gediminas Greicius

    Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Lilian Tamara Kaufmann

    Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Benedikt Prunsche

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jakob Rosenbauer

    Jülich Supercomputing Centre, Forschungszentrum Jülich, John von Neumann Institute for Computing, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Stegmaier

    Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-3759
  8. Ralf Mikut

    Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Suat Özbek

    Centre of Organismal Studies, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gerd Ulrich Nienhaus

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5027-3192
  11. Alexander Schug

    Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. David M Virshup

    Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6976-850X
  13. Steffen Scholpp

    Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
    For correspondence
    s.scholpp@exeter.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4903-9657

Funding

Living Systems Institute (Start-up)

  • Steffen Scholpp

Boehringer Ingelheim Fonds (Exploration)

  • Steffen Scholpp

Deutsche Forschungsgemeinschaft (Scho847-5)

  • Steffen Scholpp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Mattes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,183
    views
  • 1,212
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Mattes
  2. Yonglong Dang
  3. Gediminas Greicius
  4. Lilian Tamara Kaufmann
  5. Benedikt Prunsche
  6. Jakob Rosenbauer
  7. Johannes Stegmaier
  8. Ralf Mikut
  9. Suat Özbek
  10. Gerd Ulrich Nienhaus
  11. Alexander Schug
  12. David M Virshup
  13. Steffen Scholpp
(2018)
Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates
eLife 7:e36953.
https://doi.org/10.7554/eLife.36953

Share this article

https://doi.org/10.7554/eLife.36953

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.