Building a functional connectome of the Drosophila central complex

  1. Romain Franconville  Is a corresponding author
  2. Celia Beron
  3. Vivek Jayaraman  Is a corresponding author
  1. Howard Hughes Medical Institute, United States

Abstract

The central complex is a highly conserved insect brain region composed of morphologically stereotyped neurons that arborize in distinctively shaped substructures. The region is implicated in a wide range of behaviors and several modeling studies have explored its circuit computations. Most studies have relied on assumptions about connectivity between neurons based on their overlap in light microscopy images. Here, we present an extensive functional connectome of Drosophila melanogaster's central complex at cell-type resolution. Using simultaneous optogenetic stimulation, calcium imaging and pharmacology, we tested the connectivity between 70 presynaptic-to-postsynaptic cell-type pairs. We identi1ed numerous inputs to the central complex, but only a small number of output channels. Additionally, the connectivity of this highly recurrent circuit appears to be sparser than anticipated from light microscopy images. Finally, the connectivity matrix highlights the potentially critical role of a class of bottleneck interneurons. All data is provided for interactive exploration on a website.

Data availability

All the data generated or analyzed during this study is freely available for exploration at:https://romainfr.github.io/CX-Functional-Website/All code and data are available at:https://osf.io/vsa3z/

The following data sets were generated
    1. Franconville R
    (2018) Central complex functional connectivity
    DOI 10.17605/OSF.IO/VSA3Z | ARK c7605/osf.io/vsa3z.

Article and author information

Author details

  1. Romain Franconville

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    franconviller@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4440-7297
  2. Celia Beron

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vivek Jayaraman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    vivek@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3680-7378

Funding

Howard Hughes Medical Institute

  • Romain Franconville
  • Celia Beron
  • Vivek Jayaraman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Franconville et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,344
    views
  • 916
    downloads
  • 129
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romain Franconville
  2. Celia Beron
  3. Vivek Jayaraman
(2018)
Building a functional connectome of the Drosophila central complex
eLife 7:e37017.
https://doi.org/10.7554/eLife.37017

Share this article

https://doi.org/10.7554/eLife.37017