Acute control of the sleep switch in Drosophila reveals a role for gap junctions in regulating behavioral responsiveness

Abstract

Sleep is a dynamic process in most animals, involving distinct stages that probably achieve multiple functions for the brain. Before sleep functions can be initiated, it is likely that behavioral responsiveness to the outside world needs to be reduced first, even while animals are still awake. Recent work in Drosophila has uncovered a sleep switch in the dorsal fan-shaped body (dFB) of the fly's central brain, but it is unknown if these sleep-promoting neurons also govern the acute need to ignore salient stimuli in the environment during sleep transitions. We found that optogenetic activation of the sleep switch suppressed behavioral responsiveness to mechanical stimuli, even in awake flies, indicating a broader role for these neurons in regulating arousal. The dFB-mediated suppression mechanism and its associated neural correlates requires innexin6 expression, suggesting that the acute need to reduce sensory perception when flies fall asleep is mediated in part by electrical synapses.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michael Troup

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Melvyn HW Yap

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Chelsie Rohrscheib

    Queensland Brain Insitute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Martyna J Grabowska

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1727-7714
  5. Deniz Ertekin

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Roshini Randeniya

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1340-750X
  7. Benjamin Kottler

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4551-5791
  8. Aoife Larkin

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Kelly Munro

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Paul Shaw

    School of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bruno van Swinderen

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    For correspondence
    b.vanswinderen@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6552-7418

Funding

National Institutes of Health (R01 NS076980)

  • Melvyn HW Yap
  • Paul Shaw
  • Bruno van Swinderen

National Health and Medical Research Council (GNT1065713)

  • Michael Troup
  • Chelsie Rohrscheib
  • Aoife Larkin
  • Bruno van Swinderen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Troup et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,327
    views
  • 689
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Troup
  2. Melvyn HW Yap
  3. Chelsie Rohrscheib
  4. Martyna J Grabowska
  5. Deniz Ertekin
  6. Roshini Randeniya
  7. Benjamin Kottler
  8. Aoife Larkin
  9. Kelly Munro
  10. Paul Shaw
  11. Bruno van Swinderen
(2018)
Acute control of the sleep switch in Drosophila reveals a role for gap junctions in regulating behavioral responsiveness
eLife 7:e37105.
https://doi.org/10.7554/eLife.37105

Share this article

https://doi.org/10.7554/eLife.37105

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.