KCNE1 tunes the sensitivity of KV7.1 to polyunsaturated fatty acids by moving turret residues close to the binding site

  1. Johan E Larsson
  2. H Peter Larsson
  3. Sara I Liin  Is a corresponding author
  1. Linköping University, Sweden
  2. University of Miami, United States

Abstract

The voltage-gated potassium channel KV7.1 and the auxiliary subunit KCNE1 together form the cardiac IKs channel, which is a proposed target for future anti-arrhythmic drugs. We previously showed that polyunsaturated fatty acids (PUFAs) activate KV7.1 via an electrostatic mechanism. The activating effect was abolished when KV7.1 was co-expressed with KCNE1, as KCNE1 renders PUFAs ineffective by promoting PUFA protonation. PUFA protonation reduces the potential of PUFAs as anti-arrhythmic compounds. It is unknown how KCNE1 promotes PUFA protonation. Here, we found that neutralization of negatively charged residues in the S5-P-helix loop of KV7.1 restored PUFA effects on KV7.1 co-expressed with KCNE1 in Xenopus oocytes. We propose that KCNE1 moves the S5-P-helix loop of KV7.1 towards the PUFA binding site, which indirectly causes PUFA protonation, thereby reducing the effect of PUFAs on KV7.1. This mechanistic understanding of how KCNE1 alters KV7.1 pharmacology is essential for development of drugs targeting the IKs channel.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files (Supplementary File 1).

Article and author information

Author details

  1. Johan E Larsson

    Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
    Competing interests
    No competing interests declared.
  2. H Peter Larsson

    Department of Physiology and Biophysics, University of Miami, Miami, United States
    Competing interests
    H Peter Larsson, Inventor of a patent application (#62/032,739) based on these results, which has been submitted by the University of Miami.
  3. Sara I Liin

    Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
    For correspondence
    sara.liin@liu.se
    Competing interests
    Sara I Liin, Inventor of a patent application (#62/032,739) based on these results, which has been submitted by the University of Miami.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8493-0114

Funding

National Institutes of Health (R01GM109762)

  • H Peter Larsson

Svenska Sällskapet för Medicinsk Forskning

  • Sara I Liin

Vetenskapsrådet

  • Sara I Liin

Linköpings Universitet

  • Sara I Liin

The County Council of Östergötland

  • Sara I Liin

The Lions Foundation

  • Sara I Liin

National Institutes of Health (R01HL131461)

  • H Peter Larsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Ethics

Animal experimentation: Animal experiments were performed in strict accordance with the recommendation of The Linköping Animal Ethics Committee at Linköping University (protocol #53-13 ).

Version history

  1. Received: April 4, 2018
  2. Accepted: July 15, 2018
  3. Accepted Manuscript published: July 17, 2018 (version 1)
  4. Version of Record published: August 7, 2018 (version 2)

Copyright

© 2018, Larsson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 977
    Page views
  • 203
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johan E Larsson
  2. H Peter Larsson
  3. Sara I Liin
(2018)
KCNE1 tunes the sensitivity of KV7.1 to polyunsaturated fatty acids by moving turret residues close to the binding site
eLife 7:e37257.
https://doi.org/10.7554/eLife.37257

Share this article

https://doi.org/10.7554/eLife.37257

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Karolina Honzejkova, Dalibor Kosek ... Tomas Obsil
    Research Article

    Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniyal Tariq, Nicole Maurici ... Brian R Crane
    Research Article

    Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid–liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.