Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits

  1. Marios C Panayi  Is a corresponding author
  2. Simon Killcross
  1. University of New South Wales, Australia

Abstract

The orbitofrontal cortex (OFC) is critical for updating reward-directed behaviours flexibly when outcomes are devalued or when task contingencies are reversed. Failure to update behaviour in outcome devaluation and reversal learning procedures are considered canonical deficits following OFC lesions in non-human primates and rodents. We examined the generality of these findings in rodents using lesions of the rodent lateral OFC (LO) in instrumental action-outcome and Pavlovian cue-outcome devaluation procedures. LO lesions disrupted outcome devaluation in Pavlovian but not instrumental procedures. Furthermore, although both anterior and posterior LO lesions disrupted Pavlovian outcome devaluation, only posterior LO lesions were found to disrupt reversal learning. Posterior but not anterior LO lesions were also found to disrupt the attribution of motivational value to Pavlovian cues in sign-tracking. These novel dissociable task- and subregion-specific effects suggest a way to reconcile contradictory findings between rodent and non-human primate OFC research.

Data availability

All experimental data publicly available at Dryad Digital Repository. doi:10.5061/dryad.c3b0260

The following data sets were generated

Article and author information

Author details

  1. Marios C Panayi

    School of Psychology, University of New South Wales, Sydney, Australia
    For correspondence
    marios.panagi@psy.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2635-5638
  2. Simon Killcross

    School of Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (DP0989027)

  • Simon Killcross

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal research was carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratories Animals (NIH publications No. 80-23, revised 1996) and approved by the University of New South Wales Animal Care and Ethics Committee.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Publication history

  1. Received: April 7, 2018
  2. Accepted: July 24, 2018
  3. Accepted Manuscript published: July 25, 2018 (version 1)
  4. Version of Record published: August 20, 2018 (version 2)

Copyright

© 2018, Panayi & Killcross

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,946
    Page views
  • 339
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marios C Panayi
  2. Simon Killcross
(2018)
Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits
eLife 7:e37357.
https://doi.org/10.7554/eLife.37357

Further reading

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.