The roles of vision and antennal mechanoreception in hawkmoth flight control

  1. Ajinkya Dahake
  2. Anna Lisa Stöckl  Is a corresponding author
  3. James J Foster
  4. Sanjay P Sane
  5. Almut Kelber
  1. Lund University, Sweden
  2. Tata Institute of Fundamental Research, India

Abstract

Flying animals need continual sensory feedback about their body position and orientation for flight control. The visual system provides essential but slow feedback. In contrast, mechanosensory channels can provide feedback at much shorter timescales. How the contributions from these two senses are integrated remains an open question in most insect groups. In Diptera, fast mechanosensory feedback is provided by organs called halteres, and is crucial for the control of rapid flight manoeuvres, while vision controls manoeuvres in lower temporal frequency bands. Here we have investigated the visual-mechanosensory integration in the hawkmoth Macroglossum stellatarum. They represent a large group of insects that use Johnston's organs in their antennae to provide mechanosensory feedback on perturbations in body position. Our experiments show that antennal mechanosensory feedback specifically mediates fast flight manoeuvres, but not slow ones. Moreover, we did not observe compensatory interactions between antennal and visual feedback.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3, as well as Figure 2-figure supplement 1, Figure 2-figure supplement 2 and Figure 3-figure supplement 1.

Article and author information

Author details

  1. Ajinkya Dahake

    Vision Group, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Lisa Stöckl

    Vision Group, Lund University, Lund, Sweden
    For correspondence
    anna.stockl@biol.lu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0833-9995
  3. James J Foster

    Vision Group, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4444-2375
  4. Sanjay P Sane

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8274-1181
  5. Almut Kelber

    Vision Group, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3937-2808

Funding

Swedish Research Council (VR621‐2012‐2212)

  • Almut Kelber

Knut och Alice Wallenbergs Stiftelse

  • Almut Kelber

Carl Tryggers Stiftelse för Vetenskaplig Forskning (15:108)

  • James J Foster

Erasmus Mundus Scholarship

  • Ajinkya Dahake

Air Force Office for Scientific Research (FA2386‐11‐1‐ 4057)

  • Sanjay P Sane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: April 16, 2018
  2. Accepted: December 8, 2018
  3. Accepted Manuscript published: December 10, 2018 (version 1)
  4. Version of Record published: December 21, 2018 (version 2)

Copyright

© 2018, Dahake et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,293
    views
  • 256
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ajinkya Dahake
  2. Anna Lisa Stöckl
  3. James J Foster
  4. Sanjay P Sane
  5. Almut Kelber
(2018)
The roles of vision and antennal mechanoreception in hawkmoth flight control
eLife 7:e37606.
https://doi.org/10.7554/eLife.37606

Share this article

https://doi.org/10.7554/eLife.37606

Further reading

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.