The roles of vision and antennal mechanoreception in hawkmoth flight control

  1. Ajinkya Dahake
  2. Anna Lisa Stöckl  Is a corresponding author
  3. James J Foster
  4. Sanjay P Sane
  5. Almut Kelber
  1. Lund University, Sweden
  2. Tata Institute of Fundamental Research, India

Abstract

Flying animals need continual sensory feedback about their body position and orientation for flight control. The visual system provides essential but slow feedback. In contrast, mechanosensory channels can provide feedback at much shorter timescales. How the contributions from these two senses are integrated remains an open question in most insect groups. In Diptera, fast mechanosensory feedback is provided by organs called halteres, and is crucial for the control of rapid flight manoeuvres, while vision controls manoeuvres in lower temporal frequency bands. Here we have investigated the visual-mechanosensory integration in the hawkmoth Macroglossum stellatarum. They represent a large group of insects that use Johnston's organs in their antennae to provide mechanosensory feedback on perturbations in body position. Our experiments show that antennal mechanosensory feedback specifically mediates fast flight manoeuvres, but not slow ones. Moreover, we did not observe compensatory interactions between antennal and visual feedback.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3, as well as Figure 2-figure supplement 1, Figure 2-figure supplement 2 and Figure 3-figure supplement 1.

Article and author information

Author details

  1. Ajinkya Dahake

    Vision Group, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Lisa Stöckl

    Vision Group, Lund University, Lund, Sweden
    For correspondence
    anna.stockl@biol.lu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0833-9995
  3. James J Foster

    Vision Group, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4444-2375
  4. Sanjay P Sane

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8274-1181
  5. Almut Kelber

    Vision Group, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3937-2808

Funding

Swedish Research Council (VR621‐2012‐2212)

  • Almut Kelber

Knut och Alice Wallenbergs Stiftelse

  • Almut Kelber

Carl Tryggers Stiftelse för Vetenskaplig Forskning (15:108)

  • James J Foster

Erasmus Mundus Scholarship

  • Ajinkya Dahake

Air Force Office for Scientific Research (FA2386‐11‐1‐ 4057)

  • Sanjay P Sane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: April 16, 2018
  2. Accepted: December 8, 2018
  3. Accepted Manuscript published: December 10, 2018 (version 1)
  4. Version of Record published: December 21, 2018 (version 2)

Copyright

© 2018, Dahake et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,109
    Page views
  • 234
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ajinkya Dahake
  2. Anna Lisa Stöckl
  3. James J Foster
  4. Sanjay P Sane
  5. Almut Kelber
(2018)
The roles of vision and antennal mechanoreception in hawkmoth flight control
eLife 7:e37606.
https://doi.org/10.7554/eLife.37606

Further reading

    1. Neuroscience
    Claire Wyart
    Insight

    Sensory neurons previously shown to optimize speed and balance in fish by providing information about the curvature of the spine show similar morphology and connectivity in mice.

    1. Neuroscience
    Catharina Zich, Andrew J Quinn ... Sven Bestmann
    Research Article

    Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral and spatiotemporal characteristics, indicating distinct functional roles.