1. Neuroscience
Download icon

Competition for synaptic building blocks shapes synaptic plasticity

  1. Jochen Triesch  Is a corresponding author
  2. Anh Duong Vo
  3. Anne-Sophie Hafner
  1. Frankfurt Institute for Advanced Studies, Germany
  2. Max Planck Institute for Brain Research, Germany
Research Article
  • Cited 10
  • Views 1,962
  • Annotations
Cite this article as: eLife 2018;7:e37836 doi: 10.7554/eLife.37836


Changes in the efficacies of synapses are thought to be the neurobiological basis of learning and memory. The efficacy of a synapse depends on its current number of neurotransmitter receptors. Recent experiments have shown that these receptors are highly dynamic, moving back and forth between synapses on time scales of seconds and minutes. This suggests spontaneous fluctuations in synaptic efficacies and a competition of nearby synapses for available receptors. Here we propose a mathematical model of this competition of synapses for neurotransmitter receptors from a local dendritic pool. Using minimal assumptions, the model produces a fast multiplicative scaling behavior of synapses. Furthermore, the model explains a transient form of heterosynaptic plasticity and predicts that its amount is inversely related to the size of the local receptor pool. Overall, our model reveals logistical tradeoffs during the induction of synaptic plasticity due to the rapid exchange of neurotransmitter receptors between synapses.

Article and author information

Author details

  1. Jochen Triesch

    Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8166-2441
  2. Anh Duong Vo

    Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne-Sophie Hafner

    Max Planck Institute for Brain Research, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4416-7307


Johanna Quandt Foundation

  • Jochen Triesch

European Molecular Biology Organization (ALTF 1095-2015)

  • Anne-Sophie Hafner

Alexander von Humboldt-Stiftung (3.3-1184902-FRA-HFST-P)

  • Anne-Sophie Hafner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy O'Leary, University of Cambridge, United Kingdom

Publication history

  1. Received: April 24, 2018
  2. Accepted: September 14, 2018
  3. Accepted Manuscript published: September 17, 2018 (version 1)
  4. Version of Record published: October 11, 2018 (version 2)


© 2018, Triesch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,962
    Page views
  • 331
  • 10

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Cesar P Canales et al.
    Research Article

    In utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.5. MIA-driven transcriptional changes were validated via protein analysis, and parallel perturbations to cortical neuroanatomy were identified via imaging. MIA-induced acute upregulation of genes associated with hypoxia, immune signaling, and angiogenesis, by six hours following exposure. This acute response was followed by changes in proliferation, neuronal and glial specification, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cells in germinal zones and alterations in neuronal and glial populations were identified in the MIA-exposed cortex. Overall, paired transcriptomic and neuroanatomical characterization revealed a sequence of perturbations to corticogenesis driven by mid-gestational MIA.

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.