1. Neuroscience
Download icon

UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity

  1. Jiandong Sun
  2. Yan Liu
  3. Yousheng Jia
  4. Xiaoning Hao
  5. Wei ju Lin
  6. Jennifer Tran
  7. Gary Lynch
  8. Michel Baudry
  9. Xiaoning Bi  Is a corresponding author
  1. Western University of Health Sciences, United States
  2. University of California, Irvine, United States
Research Article
  • Cited 14
  • Views 2,210
  • Annotations
Cite this article as: eLife 2018;7:e37993 doi: 10.7554/eLife.37993

Abstract

Accumulating evidence indicates that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Here we report that Ube3a regulates mTORC1 signaling by targeting p18, a subunit of the Ragulator. Ube3a ubiquinates p18, resulting in its proteasomal degradation, and Ube3a deficiency in the hippocampus of AS mice induces increased lysosomal localization of p18 and other members of the Ragulator-Rag complex, and increased mTORC1 activity. P18 knockdown in hippocampal CA1 neurons of AS mice reduces elevated mTORC1 activity and improves dendritic spine maturation, long-term potentiation (LTP), as well as learning performance. Our results indicate that Ube3a-mediated regulation of p18 and subsequent mTORC1 signaling is critical for typical synaptic plasticity, dendritic spine development, and learning and memory.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Jiandong Sun

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4270-8704
  2. Yan Liu

    Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yousheng Jia

    Department of Psychiatry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoning Hao

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei ju Lin

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4578-4120
  6. Jennifer Tran

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary Lynch

    Department of Psychiatry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michel Baudry

    Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaoning Bi

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    For correspondence
    xbi@westernu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7449-7003

Funding

National Institute of Neurological Disorders and Stroke (R01NS057128)

  • Michel Baudry

National Institute of Mental Health (R15MH101703)

  • Xiaoning Bi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were according to protocols(#R17-022, #R18-007) approved by institutional animal care and use committee (IACUC) of Western University of Health Sciences.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Publication history

  1. Received: April 30, 2018
  2. Accepted: July 17, 2018
  3. Accepted Manuscript published: July 18, 2018 (version 1)
  4. Version of Record published: July 27, 2018 (version 2)
  5. Version of Record updated: August 9, 2018 (version 3)

Copyright

© 2018, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,210
    Page views
  • 482
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Kara A Fulton, Kevin L Briggman
    Tools and Resources

    A dense reconstruction of neuronal synaptic connectivity typically requires high-resolution 3D electron microscopy (EM) data, but EM data alone lacks functional information about neurons and synapses. One approach to augment structural EM datasets is with the fluorescent immunohistochemical (IHC) localization of functionally relevant proteins. We describe a protocol that obviates the requirement of tissue permeabilization in thick tissue sections, a major impediment for correlative pre-embedding IHC and EM. We demonstrate the permeabilization-free labeling of neuronal cell types, intracellular enzymes, and synaptic proteins in tissue sections hundreds of microns thick in multiple brain regions from mice while simultaneously retaining the ultrastructural integrity of the tissue. Finally, we explore the utility of this protocol by performing proof-of-principle correlative experiments combining two-photon imaging of protein distributions and 3D EM.

    1. Neuroscience
    Alexa Pichet Binette et al.
    Research Article

    Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focussed on free-water corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.