UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity

  1. Jiandong Sun
  2. Yan Liu
  3. Yousheng Jia
  4. Xiaoning Hao
  5. Wei ju Lin
  6. Jennifer Tran
  7. Gary Lynch
  8. Michel Baudry
  9. Xiaoning Bi  Is a corresponding author
  1. Western University of Health Sciences, United States
  2. University of California, Irvine, United States

Abstract

Accumulating evidence indicates that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Here we report that Ube3a regulates mTORC1 signaling by targeting p18, a subunit of the Ragulator. Ube3a ubiquinates p18, resulting in its proteasomal degradation, and Ube3a deficiency in the hippocampus of AS mice induces increased lysosomal localization of p18 and other members of the Ragulator-Rag complex, and increased mTORC1 activity. P18 knockdown in hippocampal CA1 neurons of AS mice reduces elevated mTORC1 activity and improves dendritic spine maturation, long-term potentiation (LTP), as well as learning performance. Our results indicate that Ube3a-mediated regulation of p18 and subsequent mTORC1 signaling is critical for typical synaptic plasticity, dendritic spine development, and learning and memory.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Jiandong Sun

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4270-8704
  2. Yan Liu

    Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yousheng Jia

    Department of Psychiatry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoning Hao

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei ju Lin

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4578-4120
  6. Jennifer Tran

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary Lynch

    Department of Psychiatry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michel Baudry

    Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaoning Bi

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    For correspondence
    xbi@westernu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7449-7003

Funding

National Institute of Neurological Disorders and Stroke (R01NS057128)

  • Michel Baudry

National Institute of Mental Health (R15MH101703)

  • Xiaoning Bi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were according to protocols(#R17-022, #R18-007) approved by institutional animal care and use committee (IACUC) of Western University of Health Sciences.

Copyright

© 2018, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,018
    views
  • 601
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiandong Sun
  2. Yan Liu
  3. Yousheng Jia
  4. Xiaoning Hao
  5. Wei ju Lin
  6. Jennifer Tran
  7. Gary Lynch
  8. Michel Baudry
  9. Xiaoning Bi
(2018)
UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity
eLife 7:e37993.
https://doi.org/10.7554/eLife.37993

Share this article

https://doi.org/10.7554/eLife.37993

Further reading

    1. Neuroscience
    Elena Massai, Marco Bonizzato ... Marina Martinez
    Research Article

    Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.

    1. Neuroscience
    Selene Seoyun Lee, Livia Civitelli, Laura Parkkinen
    Research Article

    The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson’s disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the ‘model’ SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of ‘straight’ and ‘twisted’ microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a ’straight’ structure, whereas MSA SAA fibrils showed a ‘twisted’ structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.