UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity

  1. Jiandong Sun
  2. Yan Liu
  3. Yousheng Jia
  4. Xiaoning Hao
  5. Wei ju Lin
  6. Jennifer Tran
  7. Gary Lynch
  8. Michel Baudry
  9. Xiaoning Bi  Is a corresponding author
  1. Western University of Health Sciences, United States
  2. University of California, Irvine, United States

Abstract

Accumulating evidence indicates that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Here we report that Ube3a regulates mTORC1 signaling by targeting p18, a subunit of the Ragulator. Ube3a ubiquinates p18, resulting in its proteasomal degradation, and Ube3a deficiency in the hippocampus of AS mice induces increased lysosomal localization of p18 and other members of the Ragulator-Rag complex, and increased mTORC1 activity. P18 knockdown in hippocampal CA1 neurons of AS mice reduces elevated mTORC1 activity and improves dendritic spine maturation, long-term potentiation (LTP), as well as learning performance. Our results indicate that Ube3a-mediated regulation of p18 and subsequent mTORC1 signaling is critical for typical synaptic plasticity, dendritic spine development, and learning and memory.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Jiandong Sun

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4270-8704
  2. Yan Liu

    Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yousheng Jia

    Department of Psychiatry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoning Hao

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei ju Lin

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4578-4120
  6. Jennifer Tran

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary Lynch

    Department of Psychiatry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michel Baudry

    Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaoning Bi

    Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, United States
    For correspondence
    xbi@westernu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7449-7003

Funding

National Institute of Neurological Disorders and Stroke (R01NS057128)

  • Michel Baudry

National Institute of Mental Health (R15MH101703)

  • Xiaoning Bi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Ethics

Animal experimentation: Animal studies were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were according to protocols(#R17-022, #R18-007) approved by institutional animal care and use committee (IACUC) of Western University of Health Sciences.

Version history

  1. Received: April 30, 2018
  2. Accepted: July 17, 2018
  3. Accepted Manuscript published: July 18, 2018 (version 1)
  4. Version of Record published: July 27, 2018 (version 2)
  5. Version of Record updated: August 9, 2018 (version 3)

Copyright

© 2018, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,952
    views
  • 595
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiandong Sun
  2. Yan Liu
  3. Yousheng Jia
  4. Xiaoning Hao
  5. Wei ju Lin
  6. Jennifer Tran
  7. Gary Lynch
  8. Michel Baudry
  9. Xiaoning Bi
(2018)
UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity
eLife 7:e37993.
https://doi.org/10.7554/eLife.37993

Share this article

https://doi.org/10.7554/eLife.37993

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.