How biological attention mechanisms improve task performance in a large-scale visual system model
Abstract
How does attentional modulation of neural activity enhance performance? Here we use a deep convolutional neural network as a large-scale model of the visual system to address this question. We model the feature similarity gain model of attention, in which attentional modulation is applied according to neural stimulus tuning. Using a variety of visual tasks, we show that neural modulations of the kind and magnitude observed experimentally lead to performance changes of the kind and magnitude observed experimentally. We find that, at earlier layers, attention applied according to tuning does not successfully propagate through the network, and has a weaker impact on performance than attention applied according to values computed for optimally modulating higher areas. This raises the question of whether biological attention might be applied at least in part to optimize function rather than strictly according to tuning. We suggest a simple experiment to distinguish these alternatives.
Data availability
The weights for the model used are linked to in the study. The data resulting from simulations have been packaged and are available on Dryad (doi:10.5061/dryad.jc14081). The analysis code are available on GitHub (https://github.com/gwl2108/CNN_attention)
-
Data from: How biological attention mechanisms improve task performance in a large-scale visual system modelAvailable at Dryad Digital Repository under a CC0 Public Domain Dedication.
Article and author information
Author details
Funding
National Science Foundation (DBI-1707398)
- Kenneth D Miller
National Institutes of Health (T32 NS064929)
- Kenneth D Miller
Gatsby Charitable Foundation
- Kenneth D Miller
- Grace W Lindsay
National Science Foundation (IIS-1704938)
- Kenneth D Miller
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Lindsay & Miller
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,134
- views
-
- 777
- downloads
-
- 57
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.
-
- Neuroscience
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.