Adaptation after vastus lateralis denervation in rats demonstrates neural regulation of joint stresses and strains

Abstract

In order to produce movements, muscles must act through joints. The translation from muscle force to limb movement is mediated by internal joint structures that permit movement in some directions but constrain it in others. Although muscle forces acting against constrained directions will not affect limb movements, such forces can cause excess stresses and strains in joint structures, leading to pain or injury. In this study, we hypothesized that the central nervous system (CNS) chooses muscle activations to avoid excess joint stresses and strains. We evaluated this hypothesis by examining adaptation strategies after selective paralysis of a muscle acting at the rat's knee. We show that the CNS compromises between restoration of task performance and regulation of joint stresses and strains. These results have significant implications to our understanding of the neural control of movements, suggesting that common theories emphasizing task performance are insufficient to explain muscle activations during behaviors.

Data availability

We have uploaded files with all source data and code for data analysis for each of the figures showing primary data.

Article and author information

Author details

  1. Cristiano Alessandro

    Department of Physiology, Northwestern University, Chicago, United States
    For correspondence
    cristiano.alessandro@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0655-4189
  2. Benjamin A Rellinger

    Department of Biomedical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Filipe Oliveira Barroso

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0228-6447
  4. Matthew Tresch

    Department of Physiology, Northwestern University, Chicago, United States
    For correspondence
    m-tresch@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9994-3989

Funding

National Institutes of Health (NS086973)

  • Matthew Tresch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#IS00000628) of the Northwestern University. The protocol was approved by the Animal Care Committee of Northwestern University.

Copyright

© 2018, Alessandro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,284
    views
  • 141
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristiano Alessandro
  2. Benjamin A Rellinger
  3. Filipe Oliveira Barroso
  4. Matthew Tresch
(2018)
Adaptation after vastus lateralis denervation in rats demonstrates neural regulation of joint stresses and strains
eLife 7:e38215.
https://doi.org/10.7554/eLife.38215

Share this article

https://doi.org/10.7554/eLife.38215

Further reading

    1. Neuroscience
    Lisa M Bas, Ian D Roberts ... Anita Tusche
    Research Article

    People selectively help others based on perceptions of their merit or need. Here, we develop a neurocomputational account of how these social perceptions translate into social choice. Using a novel fMRI social perception task, we show that both merit and need perceptions recruited the brain’s social inference network. A behavioral computational model identified two non-exclusive mechanisms underlying variance in social perceptions: a consistent tendency to perceive others as meritorious/needy (bias) and a propensity to sample and integrate normative evidence distinguishing high from low merit/need in other people (sensitivity). Variance in people’s merit (but not need) bias and sensitivity independently predicted distinct aspects of altruism in a social choice task completed months later. An individual’s merit bias predicted context-independent variance in people’s overall other-regard during altruistic choice, biasing people toward prosocial actions. An individual’s merit sensitivity predicted context-sensitive discrimination in generosity toward high and low merit recipients by influencing other- and self-regard during altruistic decision-making. This context-sensitive perception–action link was associated with activation in the right temporoparietal junction. Together, these findings point toward stable, biologically based individual differences in perceptual processes related to abstract social concepts like merit, and suggest that these differences may have important behavioral implications for an individual’s tendency toward favoritism or discrimination in social settings.

    1. Neuroscience
    Weihua Cai, Arkady Khoutorsky
    Insight

    Mice lacking two neuropeptides thought to be essential for processing pain show no change in how they respond to a wide range of harmful stimuli.