The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy

Abstract

Calcium (Ca2+) dysregulation is a hallmark of heart failure and is characterized by impaired Ca2+ sequestration into the sarcoplasmic reticulum (SR) by the SR-Ca2+-ATPase (SERCA). We recently discovered a micropeptide named DWORF (DWarf Open Reading Frame) that enhances SERCA activity by displacing phospholamban (PLN), a potent SERCA inhibitor. Here we show that DWORF has a higher apparent binding affinity for SERCA than PLN and that DWORF overexpression mitigates the contractile dysfunction associated with PLN overexpression, substantiating its role as a potent activator of SERCA. Additionally, using a well-characterized mouse model of dilated cardiomyopathy (DCM) due to genetic deletion of the muscle-specific LIM domain protein (MLP), we show that DWORF overexpression restores cardiac function and prevents the pathological remodeling and Ca2+ dysregulation classically exhibited by MLP knockout mice. Our results establish DWORF as a potent activator of SERCA within the heart and as an attractive candidate for a heart failure therapeutic.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Catherine A Makarewich

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amir Z Munir

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabriele G Schiattarella

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Svetlana Bezprozvannaya

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olga N Raguimova

    Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ellen E Cho

    Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander H Vidal

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth L Robia

    Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rhonda Bassel-Duby

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Eric N Olson

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Eric.Olson@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1151-8262

Funding

National Institutes of Health (R01 (HL-130253))

  • Rhonda Bassel-Duby
  • Eric N Olson

Welch Foundation (Research Grant)

  • Eric N Olson

Fondation Leducq (Research Grant)

  • Eric N Olson

National Institutes of Health (R01 (HD-087351))

  • Eric N Olson

National Institutes of Health (R01 (HL-092321))

  • Seth L Robia

National Institutes of Health (F32 (HL-129674))

  • Catherine A Makarewich

National Institutes of Health (K99 (HL-141630))

  • Catherine A Makarewich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal work described in this manuscript has been approved and conducted under the oversight of the UT Southwestern Institutional Animal Care and Use Committee (IACUC). All of the animals were handled according to approved IACUC protocols (#2017-102269 and #2016-101833) of the UT Southwestern Medical Center.

Copyright

© 2018, Makarewich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,629
    views
  • 990
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine A Makarewich
  2. Amir Z Munir
  3. Gabriele G Schiattarella
  4. Svetlana Bezprozvannaya
  5. Olga N Raguimova
  6. Ellen E Cho
  7. Alexander H Vidal
  8. Seth L Robia
  9. Rhonda Bassel-Duby
  10. Eric N Olson
(2018)
The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy
eLife 7:e38319.
https://doi.org/10.7554/eLife.38319

Share this article

https://doi.org/10.7554/eLife.38319

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.