NMDA spikes mediate amplification of inputs in the rat piriform cortex

  1. Amit Kumar
  2. Oded Schiff
  3. Edi Barkai
  4. Bartlett W Mel  Is a corresponding author
  5. Alon Poleg-Polsky  Is a corresponding author
  6. Jackie Schiller  Is a corresponding author
  1. Technion-Israel Institute of Technology, Israel
  2. University of Haifa, Israel
  3. University of Southern California, United States
  4. University of Colorado School of Medicine, United States

Abstract

The piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown. Counter to the prevailing view that olfactory PNs sum their inputs passively, we show for the first time that NMDA spikes within individual dendrites can both amplify OB inputs and impose combination selectivity upon them, while their ability to compartmentalize voltage signals allows different dendrites to represent different odorant combinations. Thus, the 2-layer integrative behavior of olfactory PN dendrites provides a parsimonious account for the nonlinear remapping of the odor code from bulb to cortex.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Amit Kumar

    Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0674-3641
  2. Oded Schiff

    Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Edi Barkai

    Department of Neurobiology, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7325-4269
  4. Bartlett W Mel

    Biomedical Engineering Department, University of Southern California, Los Angeles, United States
    For correspondence
    mel@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Alon Poleg-Polsky

    Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    ALON.POLEG-POLSKY@UCDENVER.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1327-5129
  6. Jackie Schiller

    Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
    For correspondence
    jackie@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9182-7166

Funding

Israeli Science Foundation

  • Jackie Schiller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Ethics

Animal experimentation: All animal procedures were in accordance with guidelines established by the NIH on the care and use of animals in research and were confirmed by the Technion Institutional Animal Care and Use Committee (IL-012-01-18, valid until 10/4/2022).

Version history

  1. Received: May 18, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: December 21, 2018 (version 1)
  4. Version of Record published: January 15, 2019 (version 2)

Copyright

© 2018, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,304
    views
  • 439
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amit Kumar
  2. Oded Schiff
  3. Edi Barkai
  4. Bartlett W Mel
  5. Alon Poleg-Polsky
  6. Jackie Schiller
(2018)
NMDA spikes mediate amplification of inputs in the rat piriform cortex
eLife 7:e38446.
https://doi.org/10.7554/eLife.38446

Share this article

https://doi.org/10.7554/eLife.38446

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.

    1. Neuroscience
    Augustine Xiaoran Yuan, Jennifer Colonell ... Timothy D Harris
    Tools and Resources

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.