1. Developmental Biology
Download icon

Generation of the squamous epithelial roof of the 4th ventricle

  1. Florent Campo-Paysaa
  2. Jonathan DW Clarke  Is a corresponding author
  3. Richard JT Wingate  Is a corresponding author
  1. King's College London, United Kingdom
Research Article
  • Cited 1
  • Views 745
  • Annotations
Cite this article as: eLife 2019;8:e38485 doi: 10.7554/eLife.38485

Abstract

We use the transparency of zebrafish embryos to reveal the de novo generation of a simple squamous epithelium and identify the cellular architecture in the epithelial transition zone that ties this squamous epithelium to the columnar neuroepithelium within the embryo's brain. The simple squamous epithelium of the rhombencephalic roof plate is pioneered by distinct mesenchymal cells at the dorsal midline of the neural tube. Subsequently, a progenitor zone is established at the interface between columnar epithelium of the rhombic lip and the expanding squamous epithelium of the roof plate. Surprisingly, this interface consists of a single progenitor cell type that we have named the veil cell. Veil cells express gdf6a and constitute a lineage restricted stem zone that generates the squamous roof plate by direct transformation and asymmetrically fated divisions. Experimental restriction of roof plate expansion leads to extrusion of veil cell daughters and squamous cells, suggesting veil cell fate is regulated by the space available for roof plate growth.

Article and author information

Author details

  1. Florent Campo-Paysaa

    Department of Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan DW Clarke

    Department of Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    jon.clarke@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard JT Wingate

    Department of Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    richard.wingate@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1662-6097

Funding

Biotechnology and Biological Sciences Research Council (BB/I021507/1)

  • Jonathan DW Clarke
  • Richard JT Wingate

Wellcome

  • Jonathan DW Clarke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the local ethics committee of King's College London and all animals handled according to the provisions of the Home Office UK Animals Scientific Procedures act 1986 (licence P70880F4C).

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Publication history

  1. Received: May 18, 2018
  2. Accepted: February 18, 2019
  3. Accepted Manuscript published: February 18, 2019 (version 1)
  4. Version of Record published: February 28, 2019 (version 2)

Copyright

© 2019, Campo-Paysaa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 745
    Page views
  • 149
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Feng Wang et al.
    Research Article Updated

    The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.

    1. Developmental Biology
    2. Neuroscience
    Hiroki Takechi et al.
    Research Article

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.