Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans
Abstract
In the human fungal pathogen Cryptococcus neoformans, sex can benefit its pathogenicity through production of meiospores, which are believed to offer both physical and meiosis-created lineage advantages for its infections. Cryptococcus sporulation occurs following two parallel events, meiosis and differentiation of the basidium, the characteristic sexual structure of the basidiomycetes. However, the circuit integrating these events to ensure subsequent sporulation is unclear. Here, we show the spatiotemporal coordination of meiosis and basidial maturation by visualizing event-specific molecules in developing basidia defined by a quantitative approach. Monitoring of gene induction timing together with genetic analysis reveals co-regulation of the coordinated events by a shared regulatory program. Two RRM family regulators, Csa1 and Csa2, are crucial components that specifically bridge meiosis and basidial maturation, further determining sporulation. We propose that the regulatory coordination of meiosis and basidial development serves as a determinant underlying the production of infectious meiospores in C. neoformans.
Data availability
The GEO accession number for the RNA-seq data reported in this study is GSE111975.
Article and author information
Author details
Funding
Ministry of Science and Technology of the People's Republic of China (2018ZX10101004)
- Linqi Wang
National Natural Science Foundation of China (31622004,31570138,31770163)
- Linqi Wang
Chinese Academy of Sciences Key Project (QYZDB-SSW-SSMC040)
- Linqi Wang
National Natural Science Foundation of China (31501008)
- Guang-Jun He
National Natural Science Foundation of China (31501009)
- Xiuyun Tian
The funders had roles in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Liu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,388
- views
-
- 404
- downloads
-
- 34
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 34
- citations for umbrella DOI https://doi.org/10.7554/eLife.38683