Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans

  1. Linxia Liu
  2. Guang-Jun He
  3. Lei Chen
  4. Jiao Zheng
  5. Yingying Chen
  6. Lan Shen
  7. Xiuyun Tian
  8. Erwei Li
  9. Ence Yang
  10. Guojian Liao
  11. Linqi Wang  Is a corresponding author
  1. Institute of Microbiology, Chinese Academy of Sciences, China
  2. Southwest University, China
  3. School of Basic Medical Sciences, Peking University Health Science Center, China

Abstract

In the human fungal pathogen Cryptococcus neoformans, sex can benefit its pathogenicity through production of meiospores, which are believed to offer both physical and meiosis-created lineage advantages for its infections. Cryptococcus sporulation occurs following two parallel events, meiosis and differentiation of the basidium, the characteristic sexual structure of the basidiomycetes. However, the circuit integrating these events to ensure subsequent sporulation is unclear. Here, we show the spatiotemporal coordination of meiosis and basidial maturation by visualizing event-specific molecules in developing basidia defined by a quantitative approach. Monitoring of gene induction timing together with genetic analysis reveals co-regulation of the coordinated events by a shared regulatory program. Two RRM family regulators, Csa1 and Csa2, are crucial components that specifically bridge meiosis and basidial maturation, further determining sporulation. We propose that the regulatory coordination of meiosis and basidial development serves as a determinant underlying the production of infectious meiospores in C. neoformans.

Data availability

The GEO accession number for the RNA-seq data reported in this study is GSE111975.

The following data sets were generated

Article and author information

Author details

  1. Linxia Liu

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Guang-Jun He

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lei Chen

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiao Zheng

    College of Pharmaceutical Sciences, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yingying Chen

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lan Shen

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiuyun Tian

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Erwei Li

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ence Yang

    Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Guojian Liao

    Institute of Morden Biopharmaceuticals, School of Pharmaceutical Sciences, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Linqi Wang

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    wanglq@im.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5243-341X

Funding

Ministry of Science and Technology of the People's Republic of China (2018ZX10101004)

  • Linqi Wang

National Natural Science Foundation of China (31622004,31570138,31770163)

  • Linqi Wang

Chinese Academy of Sciences Key Project (QYZDB-SSW-SSMC040)

  • Linqi Wang

National Natural Science Foundation of China (31501008)

  • Guang-Jun He

National Natural Science Foundation of China (31501009)

  • Xiuyun Tian

The funders had roles in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,297
    views
  • 396
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Linxia Liu
  2. Guang-Jun He
  3. Lei Chen
  4. Jiao Zheng
  5. Yingying Chen
  6. Lan Shen
  7. Xiuyun Tian
  8. Erwei Li
  9. Ence Yang
  10. Guojian Liao
  11. Linqi Wang
(2018)
Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans
eLife 7:e38683.
https://doi.org/10.7554/eLife.38683

Share this article

https://doi.org/10.7554/eLife.38683

Further reading

    1. Microbiology and Infectious Disease
    Emma Brown, Gemma Swinscoe ... Stephen Griffin
    Research Article Updated

    Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.

    1. Microbiology and Infectious Disease
    Yucheng Liang, Jean-Emmanuel Hugonnet ... Michel Arthur
    Research Advance

    Peptidoglycan (PG) is a giant macromolecule that completely surrounds bacterial cells and prevents lysis in hypo-osmotic environments. This net-like macromolecule is made of glycan strands linked to each other by two types of transpeptidases that form either 4→3 (PBPs) or 3→3 (LDTs) cross-links. Previously, we devised a heavy isotope-based PG full labeling method coupled to mass spectrometry to determine the mode of insertion of new subunits into the expanding PG network (Atze et al., 2022). We showed that PG polymerization operates according to different modes for the formation of the septum and of the lateral cell walls, as well as for bacterial growth in the presence or absence of β-lactams in engineered strains that can exclusively rely on LDTs for PG cross-linking when drugs are present. Here, we apply our method to the resolution of the kinetics of the reactions leading to the covalent tethering of the Braun lipoprotein (Lpp) to PG and the subsequent hydrolysis of that same covalent link. We find that Lpp and disaccharide-peptide subunits are independently incorporated into the expanding lateral cell walls. Newly synthesized septum PG appears to contain small amounts of tethered Lpp. LDTs did mediate intense shuffling of Lpp between PG stems leading to a dynamic equilibrium between the PG-tethered and free forms of Lpp.