Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans

  1. Linxia Liu
  2. Guang-Jun He
  3. Lei Chen
  4. Jiao Zheng
  5. Yingying Chen
  6. Lan Shen
  7. Xiuyun Tian
  8. Erwei Li
  9. Ence Yang
  10. Guojian Liao
  11. Linqi Wang  Is a corresponding author
  1. Institute of Microbiology, Chinese Academy of Sciences, China
  2. Southwest University, China
  3. School of Basic Medical Sciences, Peking University Health Science Center, China

Abstract

In the human fungal pathogen Cryptococcus neoformans, sex can benefit its pathogenicity through production of meiospores, which are believed to offer both physical and meiosis-created lineage advantages for its infections. Cryptococcus sporulation occurs following two parallel events, meiosis and differentiation of the basidium, the characteristic sexual structure of the basidiomycetes. However, the circuit integrating these events to ensure subsequent sporulation is unclear. Here, we show the spatiotemporal coordination of meiosis and basidial maturation by visualizing event-specific molecules in developing basidia defined by a quantitative approach. Monitoring of gene induction timing together with genetic analysis reveals co-regulation of the coordinated events by a shared regulatory program. Two RRM family regulators, Csa1 and Csa2, are crucial components that specifically bridge meiosis and basidial maturation, further determining sporulation. We propose that the regulatory coordination of meiosis and basidial development serves as a determinant underlying the production of infectious meiospores in C. neoformans.

Data availability

The GEO accession number for the RNA-seq data reported in this study is GSE111975.

The following data sets were generated

Article and author information

Author details

  1. Linxia Liu

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Guang-Jun He

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lei Chen

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiao Zheng

    College of Pharmaceutical Sciences, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yingying Chen

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lan Shen

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiuyun Tian

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Erwei Li

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ence Yang

    Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Guojian Liao

    Institute of Morden Biopharmaceuticals, School of Pharmaceutical Sciences, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Linqi Wang

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    wanglq@im.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5243-341X

Funding

Ministry of Science and Technology of the People's Republic of China (2018ZX10101004)

  • Linqi Wang

National Natural Science Foundation of China (31622004,31570138,31770163)

  • Linqi Wang

Chinese Academy of Sciences Key Project (QYZDB-SSW-SSMC040)

  • Linqi Wang

National Natural Science Foundation of China (31501008)

  • Guang-Jun He

National Natural Science Foundation of China (31501009)

  • Xiuyun Tian

The funders had roles in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph Heitman, Duke University, United States

Version history

  1. Received: May 26, 2018
  2. Accepted: October 2, 2018
  3. Accepted Manuscript published: October 3, 2018 (version 1)
  4. Version of Record published: November 14, 2018 (version 2)

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,219
    views
  • 382
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Linxia Liu
  2. Guang-Jun He
  3. Lei Chen
  4. Jiao Zheng
  5. Yingying Chen
  6. Lan Shen
  7. Xiuyun Tian
  8. Erwei Li
  9. Ence Yang
  10. Guojian Liao
  11. Linqi Wang
(2018)
Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans
eLife 7:e38683.
https://doi.org/10.7554/eLife.38683

Share this article

https://doi.org/10.7554/eLife.38683

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.