Insulin regulates POMC neuronal plasticity to control glucose metabolism

  1. Garron T Dodd
  2. Natalie J Michael
  3. Robert S Lee-Young
  4. Salvatore P Mangiafico
  5. Jack T Pryor
  6. Astrid C Munder
  7. Stephanie E Simonds
  8. Jens Claus Brüning
  9. Zhong-Yin Zhang
  10. Michael A Cowley
  11. Sofianos Andrikopoulos
  12. Tamas L Horvath
  13. David Spanswick  Is a corresponding author
  14. Tony Tiganis  Is a corresponding author
  1. Monash University, Australia
  2. University of Melbourne, Australia
  3. Max Plank Institute for Metabolism Research, Germany
  4. Purdue University, United States
  5. Yale University School of Medicine, United States

Abstract

Hypothalamic neurons respond to nutritional cues by altering gene expression and neuronal excitability. The mechanisms that control such adaptive processes remain unclear. Here we define populations of POMC neurons in mice that are activated or inhibited by insulin and thereby repress or inhibit hepatic glucose production (HGP). The proportion of POMC neurons activated by insulin was dependent on the regulation of insulin receptor signaling by the phosphatase TCPTP, which is increased by fasting, degraded after feeding and elevated in diet-induced obesity. TCPTP-deficiency enhanced insulin signaling and the proportion of POMC neurons activated by insulin to repress HGP. Elevated TCPTP in POMC neurons in obesity and/or after fasting repressed insulin signaling, the activation of POMC neurons by insulin and the insulin-induced and POMC-mediated repression of HGP. Our findings define a molecular mechanism for integrating POMC neural responses with feeding to control glucose metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Garron T Dodd

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Natalie J Michael

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9032-0862
  3. Robert S Lee-Young

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Salvatore P Mangiafico

    Department of Medicine, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jack T Pryor

    Department of Physiology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Astrid C Munder

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie E Simonds

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Jens Claus Brüning

    Department of Neuronal Control of Metabolism, Max Plank Institute for Metabolism Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhong-Yin Zhang

    Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael A Cowley

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Sofianos Andrikopoulos

    Department of Medicine, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Tamas L Horvath

    Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7522-4602
  13. David Spanswick

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    For correspondence
    David.Spanswick@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Tony Tiganis

    Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    For correspondence
    Tony.Tiganis@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8065-9942

Funding

National Health and Medical Research Council

  • David Spanswick
  • Tony Tiganis

National Health and Medical Research Council

  • Michael A Cowley

National Institutes of Health

  • Tamas L Horvath

National Institutes of Health

  • Zhong-Yin Zhang

National Health and Medical Research Council

  • Sofianos Andrikopoulos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: Experiments were approved by the Monash University School of Biomedical Sciences Animal EthicsCommittee (MARP2013/137).

Version history

  1. Received: May 27, 2018
  2. Accepted: September 14, 2018
  3. Accepted Manuscript published: September 19, 2018 (version 1)
  4. Version of Record published: October 3, 2018 (version 2)

Copyright

© 2018, Dodd et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,985
    views
  • 732
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Garron T Dodd
  2. Natalie J Michael
  3. Robert S Lee-Young
  4. Salvatore P Mangiafico
  5. Jack T Pryor
  6. Astrid C Munder
  7. Stephanie E Simonds
  8. Jens Claus Brüning
  9. Zhong-Yin Zhang
  10. Michael A Cowley
  11. Sofianos Andrikopoulos
  12. Tamas L Horvath
  13. David Spanswick
  14. Tony Tiganis
(2018)
Insulin regulates POMC neuronal plasticity to control glucose metabolism
eLife 7:e38704.
https://doi.org/10.7554/eLife.38704

Share this article

https://doi.org/10.7554/eLife.38704

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.