Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5

  1. Jingpeng Ge
  2. Johannes Elferich
  3. April Goehring
  4. Joy Zhao
  5. Peter Schuck
  6. Eric Gouaux  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. National Institutes of Health, United States

Abstract

Hearing and balance involve the transduction of mechanical stimuli into electrical signals by deflection of bundles of stereocilia linked together by protocadherin 15 (PCDH15) and cadherin 23 'tip links'. PCDH15 transduces tip link tension into opening of a mechano-electrical transduction (MET) ion channel. PCDH15 also interacts with LHFPL5, a candidate subunit of the MET channel. Here we illuminate the PCDH15-LHFPL5 structure, showing how the complex is composed of PCDH15 and LHFPL5 subunit pairs related by a 2-fold axis. The extracellular cadherin domains define a mobile tether coupled to a rigid, 2-fold symmetric 'collar' proximal to the membrane bilayer. LHFPL5 forms extensive interactions with the PCDH15 transmembrane helices and stabilizes the overall PCDH15-LHFPL5 assembly. Our studies illuminate the architecture of the PCDH15-LHFPL5 complex, localize mutations associated with deafness, and shed new light on how forces in the PCDH15 tether may be transduced into the stereocilia membrane.

Data availability

The crystal structure of EC11-EL has been deposited to the Protein Data Bank under accession code 6C10. The three-dimensional cryo-EM density maps of the PCDH154EC-LHFPL5 complex and the PCDH151EC-LHFPL5 complex have been deposited to the EM database under the accession codes EMD-7327 and EMD-7328, respectively, and the coordinates for the structures have been deposited to the Protein Data Bank under the accession codes 6C13 and 6C14, respectively.

The following data sets were generated
    1. Gouaux E
    2. Elferich J
    3. Ge J
    (2018) Soluble domain of a membrane protein
    Publicly available at the RCSB Protein Data Bank (accession no: PDB 6C10).
    1. Gouaux E
    2. Elferich J
    3. Ge J
    (2018) Structure of a membrane protein complex
    Publicly available at the RCSB Protein Data Bank (accession no: PDB 6C13).
    1. Gouaux E
    2. Elferich J
    3. Ge J
    (2018) Structure of a membrane protein complex
    Publicly available at the Electron Microscopy Data Bank (accession no: EMD-7327).
    1. Gouaux E
    2. Elferich J
    3. Ge J
    (2018) cryoEM structure of membrane protein complex
    Publicly available at the RCSB Protein Data Bank (accession no: PDB 6C14).
    1. Gouaux E
    2. Elferich J
    3. Ge J
    (2018) cryoEM structure of membrane protein complex
    Publicly available at the Electron Microscopy Data Bank (accession no: EMD-7328).

Article and author information

Author details

  1. Jingpeng Ge

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6164-1221
  2. Johannes Elferich

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9911-706X
  3. April Goehring

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joy Zhao

    Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Schuck

    Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8859-6966
  6. Eric Gouaux

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    gouauxe@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8549-2360

Funding

National Institutes of Health (NIBIB intramural research program)

  • Joy Zhao
  • Peter Schuck

Howard Hughes Medical Institute

  • Eric Gouaux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William I Weis, Stanford University Medical Center, United States

Version history

  1. Received: May 30, 2018
  2. Accepted: July 31, 2018
  3. Accepted Manuscript published: August 2, 2018 (version 1)
  4. Version of Record published: August 14, 2018 (version 2)
  5. Version of Record updated: September 12, 2018 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,565
    views
  • 883
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingpeng Ge
  2. Johannes Elferich
  3. April Goehring
  4. Joy Zhao
  5. Peter Schuck
  6. Eric Gouaux
(2018)
Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5
eLife 7:e38770.
https://doi.org/10.7554/eLife.38770

Share this article

https://doi.org/10.7554/eLife.38770

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.