Abstract

Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity.

Data availability

Source data files for all box plots are provided, i.e. for Figures 3, 5 and 8 and for Figure supplements 1-S2, 5-S1, 5-S2, 5-S3, 5-S4, 8-S1 and 8-S2.

Article and author information

Author details

  1. Vincenzo Romano

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4449-6541
  2. Licia De Propris

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurens WJ Bosman

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    l.bosman@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Warnaar

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Michiel Manuel ten Brinke

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9478-1586
  6. Sander Lindeman

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Chiheng Ju

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Arthiha Velauthapillai

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Jochen K Spanke

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Emily Middendorp Guerra

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Tycho M Hoogland

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Mario Negrello

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Egidio D Angelo

    Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Chris I De Zeeuw

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    c.dezeeuw@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5628-8187

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (ALW)

  • Chris I De Zeeuw

ZonMw

  • Chris I De Zeeuw

European Research Council (ERC-Advanced Grant)

  • Chris I De Zeeuw

European Research Council (ERC-PoC)

  • Chris I De Zeeuw

China Scholarship Council (2010623033)

  • Chiheng Ju

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Ethics

Animal experimentation: All experimental procedures were approved a priori by an independent animal ethical committee (DEC-Consult, Soest, The Netherlands) as required by Dutch law and conform the relevant institutional regulations of the Erasmus MC and Dutch legislation on animal experimentation. Permissions were obtained under the following license numbers: EMC2656, EMC2933, EMC2998, EMC3001, EMC3168 and AVD101002015273.

Version history

  1. Received: June 4, 2018
  2. Accepted: December 17, 2018
  3. Accepted Manuscript published: December 18, 2018 (version 1)
  4. Version of Record published: January 9, 2019 (version 2)

Copyright

© 2018, Romano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,469
    views
  • 375
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vincenzo Romano
  2. Licia De Propris
  3. Laurens WJ Bosman
  4. Pascal Warnaar
  5. Michiel Manuel ten Brinke
  6. Sander Lindeman
  7. Chiheng Ju
  8. Arthiha Velauthapillai
  9. Jochen K Spanke
  10. Emily Middendorp Guerra
  11. Tycho M Hoogland
  12. Mario Negrello
  13. Egidio D Angelo
  14. Chris I De Zeeuw
(2018)
Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity
eLife 7:e38852.
https://doi.org/10.7554/eLife.38852

Share this article

https://doi.org/10.7554/eLife.38852

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.