Microtubule plus-ends act as physical signaling hubs to activate RhoA during cytokinesis

  1. Vikash Verma
  2. Thomas Maresca  Is a corresponding author
  1. University of Massachusetts, Amherst, United States

Abstract

Microtubules (MTs) are essential for cleavage furrow positioning during cytokinesis, but the mechanisms by which MT-derived signals spatially define regions of cortical contractility are unresolved. In this study cytokinesis regulators visualized in Drosophila melanogaster (Dm) cells were found to localize to and track MT plus-ends during cytokinesis. The RhoA GEF Pebble (Dm ECT2) did not evidently tip-track, but rather localized rapidly to cortical sites contacted by MT plus-tips, resulting in RhoA activation and enrichment of myosin-regulatory light chain. The MT plus-end localization of centralspindlin was compromised following EB1 depletion, which resulted in a higher incidence of cytokinesis failure. Centralspindlin plus-tip localization depended on the C-terminus and a putative EB1-interaction motif (hxxPTxh) in RacGAP50C. We propose that MT plus-end-associated centralspindlin recruits a cortical pool of Dm ECT2 upon physical contact to activate RhoA and to trigger localized contractility.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Vikash Verma

    Biology Department, University of Massachusetts, Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Maresca

    Biology Department, University of Massachusetts, Amherst, Amherst, United States
    For correspondence
    tmaresca@bio.umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2214-8674

Funding

National Institute of General Medical Sciences (GM107026)

  • Thomas Maresca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Glotzer, University of Chicago, United States

Version history

  1. Received: June 7, 2018
  2. Accepted: February 10, 2019
  3. Accepted Manuscript published: February 13, 2019 (version 1)
  4. Accepted Manuscript updated: February 15, 2019 (version 2)
  5. Version of Record published: March 4, 2019 (version 3)

Copyright

© 2019, Verma & Maresca

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,526
    views
  • 559
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vikash Verma
  2. Thomas Maresca
(2019)
Microtubule plus-ends act as physical signaling hubs to activate RhoA during cytokinesis
eLife 8:e38968.
https://doi.org/10.7554/eLife.38968

Share this article

https://doi.org/10.7554/eLife.38968

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.