Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration

  1. Kieran M Short
  2. Alexander Combes
  3. Valerie Lisnyak
  4. James Lefevre
  5. Lynelle Jones
  6. Melissa H Little
  7. Nicholas Hamilton
  8. Ian Macleod Smyth  Is a corresponding author
  1. Monash University, Australia
  2. Murdoch Childrens Research Institute, Australia
  3. University of Queensland, Australia

Abstract

Branching morphogenesis of the ureteric bud is integral to kidney development; establishing the collecting ducts of the adult organ and driving organ expansion via peripheral interactions with nephron progenitor cells. A recent study suggested that termination of tip branching within the developing kidney involved stochastic exhaustion in response to nephron formation, with such a termination event representing a unifying developmental process evident in many organs. To examine this possibility we have profiled the impact of nephron formation and maturation on elaboration of the ureteric bud during mouse kidney development. We find a distinct absence of random branch termination events within the kidney or evidence that nephrogenesis impacts the branching program or cell proliferation in either tip or progenitor cell niches. Instead, organogenesis proceeds in a manner indifferent to the development of these structures. Hence stochastic cessation of branching is not a unifying developmental feature in all branching organs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files - see appended Excel files.

Article and author information

Author details

  1. Kieran M Short

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  2. Alexander Combes

    Developmental Nephrology, Murdoch Childrens Research Institute, Melbourne, Australia
    Competing interests
    No competing interests declared.
  3. Valerie Lisnyak

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  4. James Lefevre

    Division of Genomics and Development of Disease, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  5. Lynelle Jones

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  6. Melissa H Little

    Kidney Development, Disease and Regeneration, Murdoch Childrens Research Institute, Melbourne, Australia
    Competing interests
    Melissa H Little, has consulted for and received research funding from Organovo Inc..
  7. Nicholas Hamilton

    Division of Genomics and Development of Disease, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  8. Ian Macleod Smyth

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    For correspondence
    ian.smyth@monash.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1727-7829

Funding

National Health and Medical Research Council (1002748)

  • Melissa H Little

Australian Research Council (DP160103100)

  • Nicholas Hamilton
  • Ian Macleod Smyth

Human Frontier Science Program (RGP0039/2011)

  • Melissa H Little
  • Ian Macleod Smyth

National Health and Medical Research Council (1063696)

  • Melissa H Little

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments in this study were assessed and approved by Monash University or the Murdoch Children's Research Institute Animal Ethics Committees (MARP/2016/144) and were conducted under applicable Australian laws governing the care and use of animals for scientific purposes.

Copyright

© 2018, Short et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,982
    views
  • 379
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kieran M Short
  2. Alexander Combes
  3. Valerie Lisnyak
  4. James Lefevre
  5. Lynelle Jones
  6. Melissa H Little
  7. Nicholas Hamilton
  8. Ian Macleod Smyth
(2018)
Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration
eLife 7:e38992.
https://doi.org/10.7554/eLife.38992

Share this article

https://doi.org/10.7554/eLife.38992

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.