Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration

  1. Kieran M Short
  2. Alexander Combes
  3. Valerie Lisnyak
  4. James Lefevre
  5. Lynelle Jones
  6. Melissa H Little
  7. Nicholas Hamilton
  8. Ian Macleod Smyth  Is a corresponding author
  1. Monash University, Australia
  2. Murdoch Childrens Research Institute, Australia
  3. University of Queensland, Australia

Abstract

Branching morphogenesis of the ureteric bud is integral to kidney development; establishing the collecting ducts of the adult organ and driving organ expansion via peripheral interactions with nephron progenitor cells. A recent study suggested that termination of tip branching within the developing kidney involved stochastic exhaustion in response to nephron formation, with such a termination event representing a unifying developmental process evident in many organs. To examine this possibility we have profiled the impact of nephron formation and maturation on elaboration of the ureteric bud during mouse kidney development. We find a distinct absence of random branch termination events within the kidney or evidence that nephrogenesis impacts the branching program or cell proliferation in either tip or progenitor cell niches. Instead, organogenesis proceeds in a manner indifferent to the development of these structures. Hence stochastic cessation of branching is not a unifying developmental feature in all branching organs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files - see appended Excel files.

Article and author information

Author details

  1. Kieran M Short

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  2. Alexander Combes

    Developmental Nephrology, Murdoch Childrens Research Institute, Melbourne, Australia
    Competing interests
    No competing interests declared.
  3. Valerie Lisnyak

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  4. James Lefevre

    Division of Genomics and Development of Disease, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  5. Lynelle Jones

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  6. Melissa H Little

    Kidney Development, Disease and Regeneration, Murdoch Childrens Research Institute, Melbourne, Australia
    Competing interests
    Melissa H Little, has consulted for and received research funding from Organovo Inc..
  7. Nicholas Hamilton

    Division of Genomics and Development of Disease, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  8. Ian Macleod Smyth

    Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
    For correspondence
    ian.smyth@monash.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1727-7829

Funding

National Health and Medical Research Council (1002748)

  • Melissa H Little

Australian Research Council (DP160103100)

  • Nicholas Hamilton
  • Ian Macleod Smyth

Human Frontier Science Program (RGP0039/2011)

  • Melissa H Little
  • Ian Macleod Smyth

National Health and Medical Research Council (1063696)

  • Melissa H Little

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments in this study were assessed and approved by Monash University or the Murdoch Children's Research Institute Animal Ethics Committees (MARP/2016/144) and were conducted under applicable Australian laws governing the care and use of animals for scientific purposes.

Copyright

© 2018, Short et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,964
    views
  • 378
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kieran M Short
  2. Alexander Combes
  3. Valerie Lisnyak
  4. James Lefevre
  5. Lynelle Jones
  6. Melissa H Little
  7. Nicholas Hamilton
  8. Ian Macleod Smyth
(2018)
Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration
eLife 7:e38992.
https://doi.org/10.7554/eLife.38992

Share this article

https://doi.org/10.7554/eLife.38992

Further reading

    1. Developmental Biology
    Wenyue Guan, Ziyan Nie ... Jonathan Enriquez
    Research Article

    Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp−, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article Updated

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.