1. Genetics and Genomics
Download icon

Differing isoforms of the cobalamin binding photoreceptor AerR oppositely regulate photosystem expression

  1. Haruki Yamamoto
  2. Mingxu Fang
  3. Vladimira Dragnia
  4. Carl E Bauer  Is a corresponding author
  1. Indiana University, United States
Research Article
  • Cited 4
  • Views 778
  • Annotations
Cite this article as: eLife 2018;7:e39028 doi: 10.7554/eLife.39028

Abstract

Phototrophic microorganisms adjust photosystem synthesis in response to changes in light intensity and wavelength. A variety of different photoreceptors regulate this process. Purple photosynthetic bacteria synthesize a novel photoreceptor AerR that uses cobalamin (B12) as a blue-light absorbing chromophore to control photosystem synthesis. AerR directly interacts with the redox responding transcription factor CrtJ, affecting CrtJ's interaction with photosystem promoters. In this study, we show that AerR is translated as two isoforms that differ by 41 amino acids at the amino terminus. The ratio of these isoforms was affected by light and cell growth phase with the long variant predominating during photosynthetic exponential growth and the short variant predominating in dark conditions and/or stationary phase. Pigmentation and transcriptomic analyses show that the short AerR variant represses, while long variant activates, photosynthesis genes. The long form of AerR also activates many genes involved in cellular metabolism and motility.

Data availability

RNA-seq sequence read files have been deposited in Sequence Read Archive (SRA) with the accession number SRP136743 and can be accessed at the URL: https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP136743.

The following data sets were generated

Article and author information

Author details

  1. Haruki Yamamoto

    Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mingxu Fang

    Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1595-8046
  3. Vladimira Dragnia

    Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carl E Bauer

    Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    For correspondence
    bauer@indiana.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1432-0756

Funding

National Institutes of Health (GM040941)

  • Carl E Bauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: June 8, 2018
  2. Accepted: October 2, 2018
  3. Accepted Manuscript published: October 3, 2018 (version 1)
  4. Version of Record published: October 23, 2018 (version 2)

Copyright

© 2018, Yamamoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 778
    Page views
  • 111
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Genetics and Genomics
    2. Medicine
    Emanuela Abiusi et al.
    Research Article

    Background:

    Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by the degeneration of the second motor-neuron. The phenotype ranges from very severe to very mild forms. All patients have the homozygous loss of the SMN1 gene and a variable number of SMN2 (generally two-to-four copies), inversely related with the severity. The amazing results of the available treatments have made compelling the need of prognostic biomarkers to predict the progression trajectories of patients. Beside the SMN2 products, few other biomarkers have been evaluated so far, including some miRs.

    Methods:

    We performed whole miRNome analysis of muscle samples of patients and controls (14 biopsies and 9 cultures). The levels of muscle differentially expressed miRs were evaluated in serum samples (51 patients and 37 controls) and integrated with SMN2 copies, SMN2-full length transcript levels in blood and age (SMA-score).

    Results:

    Over 100 miRs were differentially expressed in SMA muscle; three of them (HSA-miR-181a-5p, -324-5p, -451a; SMA-miRs) were significantly up-regulated in serum of patients. The severity predicted by the SMA-score was related with that of the clinical classification at a correlation coefficient of 0.87 (p<10-5).

    Conclusions:

    miRNome analyses suggest the primary involvement of skeletal muscle in SMA pathogenesis; the SMA-miRs are likely actively released in the blood flow, even if their function and target cells require to be elucidated. The accuracy of the SMA-score needs to be verified in replicative studies: if confirmed, its use could be crucial for the routine prognostic assessment, also in pre-symptomatic patients.

    Funding:

    Telethon Italia (grant # GGP12116).

    1. Evolutionary Biology
    2. Genetics and Genomics
    Franziska Gruhl et al.
    Research Article

    Circular RNAs (circRNAs) are found across eukaryotes and can function in post-transcriptional gene regulation. Their biogenesis through a circle-forming backsplicing reaction is facilitated by reverse-complementary repetitive sequences promoting pre-mRNA folding. Orthologous genes from which circRNAs arise, overall contain more strongly conserved splice sites and exons than other genes, yet it remains unclear to what extent this conservation reflects purifying selection acting on the circRNAs themselves. Our analyses of circRNA repertoires from five species representing three mammalian lineages (marsupials, eutherians: rodents, primates) reveal that surprisingly few circRNAs arise from orthologous exonic loci across all species. Even the circRNAs from orthologous loci are associated with young, recently active and species-specific transposable elements, rather than with common, ancient transposon integration events. These observations suggest that many circRNAs emerged convergently during evolution - as a byproduct of splicing in orthologs prone to transposon insertion. Overall, our findings argue against widespread functional circRNA conservation.