The fate of hippocampal synapses depends on the sequence of plasticity-inducing events

  1. J Simon Wiegert
  2. Mauro Pulin
  3. Christine Elizabeth Gee
  4. Thomas G. Oertner  Is a corresponding author
  1. University Medical Center Hamburg-Eppendorf, Germany

Abstract

Synapses change their strength in response to specific activity patterns. This functional plasticity is assumed to be the brain's primary mechanism for information storage. We used optogenetic stimulation of rat hippocampal slice cultures to induce long-term potentiation (LTP), long-term depression (LTD), or both forms of plasticity in sequence. Two-photon imaging of spine calcium signals allowed us to identify stimulated synapses and to follow their fate for the next 7 days. We found that plasticity-inducing protocols affected the synapse's chance for survival: LTP increased synaptic stability, LTD destabilized synapses, and the effect of the last stimulation protocol was dominant over earlier stimulations. Interestingly, most potentiated synapses were resistant to depression-inducing protocols delivered 24 hours later. Our findings suggest that activity-dependent changes in the transmission strength of individual synapses are transient, but have long-lasting consequences for synaptic lifetime.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5.

Article and author information

Author details

  1. J Simon Wiegert

    Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0893-9349
  2. Mauro Pulin

    Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6255-0276
  3. Christine Elizabeth Gee

    Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0345-3665
  4. Thomas G. Oertner

    Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    thomas.oertner@zmnh.uni-hamburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2312-7528

Funding

Deutsche Forschungsgemeinschaft (FOR 2419)

  • Thomas G. Oertner

Deutsche Forschungsgemeinschaft (SFB 936 / B7)

  • Thomas G. Oertner

Deutsche Forschungsgemeinschaft (SPP 1665)

  • Thomas G. Oertner

European Commission (ERC-2016-StG 714762)

  • J Simon Wiegert

Deutsche Forschungsgemeinschaft (SPP 1926)

  • J Simon Wiegert

Deutsche Forschungsgemeinschaft (FOR 2419)

  • J Simon Wiegert

Deutsche Forschungsgemeinschaft (FOR 2419)

  • Christine Elizabeth Gee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal procedures were in accordance with the guidelines of local authorities and Directive 2010/63/EU.

Reviewing Editor

  1. Julie A Kauer, Brown University, United States

Publication history

  1. Received: June 12, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 12, 2018 (version 1)
  4. Version of Record published: October 29, 2018 (version 2)

Copyright

© 2018, Wiegert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,936
    Page views
  • 549
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Simon Wiegert
  2. Mauro Pulin
  3. Christine Elizabeth Gee
  4. Thomas G. Oertner
(2018)
The fate of hippocampal synapses depends on the sequence of plasticity-inducing events
eLife 7:e39151.
https://doi.org/10.7554/eLife.39151

Further reading

    1. Neuroscience
    Movitz Lenninger, Mikael Skoglund ... Arvind Kumar
    Research Article Updated

    According to the efficient coding hypothesis, sensory neurons are adapted to provide maximal information about the environment, given some biophysical constraints. In early visual areas, stimulus-induced modulations of neural activity (or tunings) are predominantly single-peaked. However, periodic tuning, as exhibited by grid cells, has been linked to a significant increase in decoding performance. Does this imply that the tuning curves in early visual areas are sub-optimal? We argue that the time scale at which neurons encode information is imperative to understand the advantages of single-peaked and periodic tuning curves, respectively. Here, we show that the possibility of catastrophic (large) errors creates a trade-off between decoding time and decoding ability. We investigate how decoding time and stimulus dimensionality affect the optimal shape of tuning curves for removing catastrophic errors. In particular, we focus on the spatial periods of the tuning curves for a class of circular tuning curves. We show an overall trend for minimal decoding time to increase with increasing Fisher information, implying a trade-off between accuracy and speed. This trade-off is reinforced whenever the stimulus dimensionality is high, or there is ongoing activity. Thus, given constraints on processing speed, we present normative arguments for the existence of the single-peaked tuning organization observed in early visual areas.

    1. Genetics and Genomics
    2. Neuroscience
    Timothy Wu, Jennifer M Deger ... Joshua M Shulman
    Research Article Updated

    Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.