Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss

Abstract

Mitogen-activated protein kinases (MAPK) p38 and c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. In contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and deregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.

Data availability

Source data files have been provided for ABR data in Figures 2 and Figure2-figure supplement 1, as well as for gene expression data in Figures 1, 3, 5, 6 and Figure1-figure supplement 1. Data has also been deposited on Dryad under the doi: 10.5061/dryad.51m8c58.

The following data sets were generated

Article and author information

Author details

  1. Adelaida M Celaya

    Endocrine and Nervous System Pathophysiology, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    For correspondence
    acelaya@iib.uam.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0757-6163
  2. Isabel Sánchez-Pérez

    Experimental Models of Human Disease, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4829-201X
  3. Jose M Bermúdez-Muñoz

    Endocrine and Nervous System Pathophysiology, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6034-9285
  4. Lourdes Rodríguez-de la Rosa

    Endocrine and Nervous System Pathophysiology, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Laura Pintado-Berninches

    Experimental Models of Human Disease, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Rosario Perona

    Experimental Models of Human Disease, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Silvia Murillo-Cuesta

    Experimental Models of Human Disease, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8706-4327
  8. Isabel Varela-Nieto

    Experimental Models of Human Disease, Institute for Biomedical Research 'Alberto Sols' (CSIC-UAM), Madrid, Spain
    For correspondence
    ivarela@iib.uam.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Economía y Competitividad (SAF2017-86107-R)

  • Isabel Varela-Nieto

Federación Española de Enfermedades Raras (P17-01401)

  • Isabel Varela-Nieto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation was conducted in accordance with Spanish (RD 53/2013) and European (Directive 2010/63/EU) legislations. All protocols used in this study were reviewed and approved by the Ethical Committee of Animal Experimentation at IIBm and Ethical Committee at CSIC in a facility inscribed in the official registration of breeding establishments, suppliers and users of experimental animals in the Ministry of Agriculture, Fisheries and Food (registration number, ES280790000188). Mice procedures were done according with scientific, humane, and ethical principles. The studied mouse model did not show phenotype differences comparing male and female. Thus, to ensure that our research represents both genders, the studies describes in this work were performed using both sexes equitably. The number of biological and experimental replicates is detailed in the legend of each figure.

Copyright

© 2019, Celaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,345
    views
  • 306
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adelaida M Celaya
  2. Isabel Sánchez-Pérez
  3. Jose M Bermúdez-Muñoz
  4. Lourdes Rodríguez-de la Rosa
  5. Laura Pintado-Berninches
  6. Rosario Perona
  7. Silvia Murillo-Cuesta
  8. Isabel Varela-Nieto
(2019)
Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss
eLife 8:e39159.
https://doi.org/10.7554/eLife.39159

Share this article

https://doi.org/10.7554/eLife.39159

Further reading

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.