Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets

Abstract

PDZ domain scaffold proteins are molecular modules orchestrating cellular signaling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Simon Erlendsson

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6378-870X
  2. Thor Seneca Thorsen

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Georges Vauquelin

    Department of Biotechnology, Free University Brussels (VUB), Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Ina Ammendrup-Johnsen

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Volker Wirth

    Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Karen L Martinez

    Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Kaare Teilum

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6919-1982
  8. Ulrik Gether

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Kenneth Lindegaard Madsen

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lnp353@ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9274-6691

Funding

National Institutes of Health

  • Ulrik Gether

Lundbeckfonden

  • Ulrik Gether

Novo Nordisk

  • Ulrik Gether

Det Frie Forskningsråd

  • Ulrik Gether

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Erlendsson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,227
    views
  • 376
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Erlendsson
  2. Thor Seneca Thorsen
  3. Georges Vauquelin
  4. Ina Ammendrup-Johnsen
  5. Volker Wirth
  6. Karen L Martinez
  7. Kaare Teilum
  8. Ulrik Gether
  9. Kenneth Lindegaard Madsen
(2019)
Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets
eLife 8:e39180.
https://doi.org/10.7554/eLife.39180

Share this article

https://doi.org/10.7554/eLife.39180

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.