Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit
Abstract
Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/β and α'/β' neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit.
Data availability
All data is included in the manuscript.
Article and author information
Author details
Funding
Bundesbehörden der Schweizerischen Eidgenossenschaft (SynaptiX)
- Simon G Sprecher
Novartis Stiftung für Medizinisch-Biologische Forschung (18A017)
- Simon G Sprecher
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII5_180316)
- Simon G Sprecher
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Widmer et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,934
- views
-
- 289
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The hippocampus is a complex structure critically involved in numerous behavior-regulating systems. In young adults, multiple overlapping spatial modes along its longitudinal and transverse axes describe the organization of its functional integration with neocortex, extending the traditional framework emphasizing functional differences between sharply segregated hippocampal subregions. Yet, it remains unknown whether these modes (i.e. gradients) persist across the adult human lifespan, and relate to memory and molecular markers associated with brain function and cognition. In two independent samples, we demonstrate that the principal anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical functional connectivity, representing distinct dimensions of macroscale cortical organization, manifest across the adult lifespan. Specifically, individual differences in topography of the second-order gradient predicted episodic memory and mirrored dopamine D1 receptor distribution, capturing shared functional and molecular organization. Older age was associated with less distinct transitions along gradients (i.e. increased functional homogeneity). Importantly, a youth-like gradient profile predicted preserved episodic memory – emphasizing age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore a critical role of mapping multidimensional hippocampal organization in understanding the neural circuits that support memory across the adult lifespan.
-
- Neuroscience
Wong et al., 2019 used a sensory preconditioning protocol to examine how sensory and fear memories are integrated in the rat medial temporal lobe. In this protocol, rats integrate a sound-light (sensory) memory that forms in stage 1 with a light-shock (fear) memory that forms in stage 2 to generate fear responses (freezing) across test presentations of the sound in stage 3. Here, we advance this research by showing that (1) how/when rats integrate the sound-light and light-shock memories (online in stage 2 or at test in stage 3) changes with the number of sound-light pairings in stage 1; and (2) regardless of how/when it occurs, the integration requires communication between two regions of the medial temporal lobe: the perirhinal cortex and basolateral amygdala complex. Thus, ‘event familiarity’ determines how/when sensory and fear memories are integrated but not the circuitry by which the integration occurs: this remains the same.