1. Physics of Living Systems
Download icon

Adaptation of olfactory receptor abundances for efficient coding

  1. Tiberiu Tesileanu  Is a corresponding author
  2. Simona Cocco
  3. Remi Monasson
  4. Vijay Balasubramanian
  1. Flatiron Institute, United States
  2. École Normale Supérieure, France
  3. University of Pennsylvania, United States
Research Article
  • Cited 2
  • Views 1,220
  • Annotations
Cite this article as: eLife 2019;8:e39279 doi: 10.7554/eLife.39279

Abstract

Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.

Article and author information

Author details

  1. Tiberiu Tesileanu

    Center for Computational Biology, Flatiron Institute, New York, United States
    For correspondence
    ttesileanu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3107-3088
  2. Simona Cocco

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Remi Monasson

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-0204
  4. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-3819

Funding

Simons Foundation (400425)

  • Vijay Balasubramanian

Aspen Center for Physics (PHY-160761)

  • Vijay Balasubramanian

Swartz Foundation

  • Tiberiu Tesileanu

National Science Foundation (PHY-1734030)

  • Tiberiu Tesileanu
  • Vijay Balasubramanian

US-Israel Binational Science Foundation (2011058)

  • Vijay Balasubramanian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Upinder Singh Bhalla, Tata Institute of Fundamental Research, India

Publication history

  1. Received: July 3, 2018
  2. Accepted: February 13, 2019
  3. Accepted Manuscript published: February 26, 2019 (version 1)
  4. Version of Record published: March 4, 2019 (version 2)

Copyright

© 2019, Tesileanu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,220
    Page views
  • 221
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Julia R Lazzari-Dean et al.
    Tools and Resources Updated
    1. Physics of Living Systems
    Le Yan et al.
    Research Article Updated