1. Neuroscience
Download icon

Myosin V functions as a vesicle tether at the plasma membrane to control neurotransmitter release in central synapses

  1. Dario Maschi
  2. Michael Gramlich
  3. Vitaly Klyachko  Is a corresponding author
  1. Washington University, United States
Research Article
  • Cited 8
  • Views 1,923
  • Annotations
Cite this article as: eLife 2018;7:e39440 doi: 10.7554/eLife.39440

Abstract

Synaptic vesicle fusion occurs at specialized release sites at the active zone. How refilling of release sites with new vesicles is regulated in central synapses remains poorly understood. Using nanoscale-resolution detection of individual release events in rat hippocampal synapses we found that inhibition of myosin V, the predominant vesicle-associated motor, strongly reduced refilling of the release sites during repetitive stimulation. Single-vesicle tracking revealed that recycling vesicles continuously shuttle between a plasma membrane pool and an inner pool. Vesicle retention at the membrane pool was regulated by neural activity in a myosin V dependent manner. Ultrastructural measurements of vesicle occupancy at the plasma membrane together with analyses of single-vesicle trajectories during vesicle shuttling between the pools suggest that myosin V acts as a vesicle tether at the plasma membrane, rather than a motor transporting vesicles to the release sites, or directly regulating vesicle exocytosis.

Article and author information

Author details

  1. Dario Maschi

    Department of Cell Biology and Physiology, Washington University, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael Gramlich

    Department of Cell Biology and Physiology, Washington University, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vitaly Klyachko

    Department of Cell Biology and Physiology, Washington University, St Louis, United States
    For correspondence
    klyachko@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3449-243X

Funding

National Institute of Neurological Disorders and Stroke (NS105776)

  • Vitaly Klyachko

CIMED Center at Washington University

  • Vitaly Klyachko

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were in compliance with the US National Institutes of Health Guide for the Care and Use of Laboratory Animals. All animal procedures conformed to the guidelines approved by the Washington University Animal Studies Committee (protocol approval # 20170233).

Reviewing Editor

  1. Yukiko Goda, RIKEN, Japan

Publication history

  1. Received: June 23, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 15, 2018 (version 1)
  4. Version of Record published: October 31, 2018 (version 2)

Copyright

© 2018, Maschi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,923
    Page views
  • 417
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Dmitri A Rusakov et al.
    Research Article Updated

    Dendritic integration of synaptic inputs involves their increased electrotonic attenuation at distal dendrites, which can be counterbalanced by the increased synaptic receptor density. However, during network activity, the influence of individual synapses depends on their release fidelity, the dendritic distribution of which remains poorly understood. Here, we employed classical optical quantal analyses and a genetically encoded optical glutamate sensor in acute hippocampal slices of rats and mice to monitor glutamate release at CA3-CA1 synapses. We find that their release probability increases with greater distances from the soma. Similar-fidelity synapses tend to group together, whereas release probability shows no trends regarding the branch ends. Simulations with a realistic CA1 pyramidal cell hosting stochastic synapses suggest that the observed trends boost signal transfer fidelity, particularly at higher input frequencies. Because high-frequency bursting has been associated with learning, the release probability pattern we have found may play a key role in memory trace formation.

    1. Neuroscience
    Masahito Yamagata et al.
    Research Article Updated

    Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates – photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.