miR-34a is a microRNA safeguard for Citrobacter-induced inflammatory colon oncogenesis

  1. Lihua Wang
  2. Ergang Wang
  3. Yi Wang
  4. Robert Mines
  5. Kun Xiang
  6. Zhiguo Sun
  7. Gaiting Zhou
  8. Kai-Yuan Chen
  9. Nikolai Rakhilin
  10. Shanshan Chao
  11. Gaoqi Ye
  12. Zhenzhen Wu
  13. Huiwen Yan
  14. Hong Shen
  15. Jeffrey Everitt
  16. Pengcheng Bu  Is a corresponding author
  17. Xiling Shen  Is a corresponding author
  1. Duke University, United States
  2. Chinese Academy of Sciences, China
  3. Affiliated Hospital of Nanjing University of TCM, China

Abstract

Inflammation often induces regeneration to repair the tissue damage. However, chronic inflammation can transform temporary hyperplasia into a fertile ground for tumorigenesis. Here, we demonstrate that the microRNA miR-34a acts as a central safeguard to protect the inflammatory stem cell niche and reparative regeneration. Although playing little role in regular homeostasis, miR-34a deficiency leads to colon tumorigenesis after Citrobacter rodentium infection. miR-34a targets both immune and epithelial cells to restrain inflammation-induced stem cell proliferation. miR-34a targets Interleukin 6 receptor (IL-6R) and Interleukin 23 receptor (IL-23R) to suppress T helper 17 (Th17) cell differentiation and expansion, targets chemokine CCL22 to hinder Th17 cell recruitment to the colon epithelium, and targets an orphan receptor Interleukin 17 receptor D (IL-17RD) to inhibit IL-17 induced stem cell proliferation. Our study highlights the importance of microRNAs in protecting the stem cell niche during inflammation despite their lack of function in regular tissue homeostasis.

Data availability

The RNA-seq data have been included as Figure 8-source data 1 and 2.

Article and author information

Author details

  1. Lihua Wang

    Department of Biomedical Engineering, Duke University, Durhuam, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ergang Wang

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi Wang

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Mines

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kun Xiang

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhiguo Sun

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gaiting Zhou

    Department of Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kai-Yuan Chen

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nikolai Rakhilin

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shanshan Chao

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Gaoqi Ye

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhenzhen Wu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Huiwen Yan

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Hong Shen

    Affiliated Hospital of Nanjing University of TCM, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Jeffrey Everitt

    Department of Pathology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Pengcheng Bu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    bupc@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3208-0354
  17. Xiling Shen

    Center for Genomics and Computational Biology, Duke University, Durham, United States
    For correspondence
    xs37@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4978-3531

Funding

National Institute of General Medical Sciences (R35GM122465)

  • Xiling Shen

National Cancer Institute (U01CA214300)

  • Xiling Shen

National Science Foundation (1350659)

  • Xiling Shen

National Cancer Institute (U01CA217514)

  • Xiling Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse maintenance and procedures were approved by Duke University DLAR and followed the protocol (A286-15-10).

Copyright

© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,373
    views
  • 394
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lihua Wang
  2. Ergang Wang
  3. Yi Wang
  4. Robert Mines
  5. Kun Xiang
  6. Zhiguo Sun
  7. Gaiting Zhou
  8. Kai-Yuan Chen
  9. Nikolai Rakhilin
  10. Shanshan Chao
  11. Gaoqi Ye
  12. Zhenzhen Wu
  13. Huiwen Yan
  14. Hong Shen
  15. Jeffrey Everitt
  16. Pengcheng Bu
  17. Xiling Shen
(2018)
miR-34a is a microRNA safeguard for Citrobacter-induced inflammatory colon oncogenesis
eLife 7:e39479.
https://doi.org/10.7554/eLife.39479

Share this article

https://doi.org/10.7554/eLife.39479

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Cancer Biology
    Weijie Wu, Miao Yu ... Hongquan Zhang
    Research Article

    Approximately 40% ERα-positive breast cancer patients suffer from therapeutic resistance to tamoxifen. Although reduced ERα level is the major cause of tamoxifen resistance, the underlying mechanisms remain elusive. Here, we report that FRMD8 raises the level of ERα at both transcriptional and post-translational layers. FRMD8 deficiency in MMTV-Cre+; Frmd8fl/fl; PyMT mice accelerates mammary tumor growth and loss of luminal phenotype, and confers tamoxifen resistance. Single-cell RNA profiling reveals that Frmd8 loss decreases the proportion of hormone-sensing differentiated epithelial cells and downregulates the levels of ERα. Mechanically, on one hand, loss of FRMD8 inhibits ESR1 transcription via suppressing the expression of FOXO3A, a transcription factor of ESR1. On the other hand, FRMD8 interacts both with ERα and UBE3A, and disrupts the interaction of UBE3A with ERα, thereby blocking UBE3A-mediated ERα degradation. In breast cancer patients, FRMD8 gene promoter is found hypermethylated and low level of FRMD8 predicts poor prognosis. Therefore, FRMD8 is an important regulator of ERα and may control therapeutic sensitivity to tamoxifen in ERα-positive breast cancer patients.