The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

  1. Federico Germani  Is a corresponding author
  2. Daniel Hain
  3. Denise Sternlicht
  4. Eduardo Moreno  Is a corresponding author
  5. Konrad Basler  Is a corresponding author
  1. University of Zurich, Switzerland
  2. University of Bern, Switzerland
  3. Champalimaud Research Center, Portugal

Abstract

The Toll pathway regulates the cellular response to infection via the transcriptional upregulation of antimicrobial peptides. In Drosophila, apart from its role in innate immunity, this pathway has also been reported to be important for the elimination of loser cells in a process referred to as cell competition, which can be locally triggered by secreted factors released from winner cells. In this work we provide evidence that the inhibition of Toll signaling not only increases the fitness of loser cells, but also bestows a clonal growth advantage on wild-type cells. We further demonstrate that this growth advantage depends on basal infection levels since it is no longer present under axenic conditions but exacerbated upon intense pathogen exposure. Thus, the Toll pathway functions as a fine-tuned pro-apoptotic and anti-proliferative regulator, underlining the existence of a trade-off between innate immunity and growth during development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Federico Germani

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    For correspondence
    federico.germani@uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5604-0437
  2. Daniel Hain

    Institute of Cell Biology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Denise Sternlicht

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Eduardo Moreno

    Champalimaud Research Center, Lisbon, Portugal
    For correspondence
    eduardo.moreno@research.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5040-452X
  5. Konrad Basler

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    For correspondence
    kb@imls.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.

Funding

Forschungskredit Candoc University of Zurich

  • Federico Germani

Swiss National Science Foundation

  • Daniel Hain

Swiss National Science Foundation

  • Eduardo Moreno

ERC

  • Daniel Hain

ERC

  • Eduardo Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Germani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,406
    views
  • 643
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Federico Germani
  2. Daniel Hain
  3. Denise Sternlicht
  4. Eduardo Moreno
  5. Konrad Basler
(2018)
The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner
eLife 7:e39939.
https://doi.org/10.7554/eLife.39939

Share this article

https://doi.org/10.7554/eLife.39939

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.