The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

  1. Federico Germani  Is a corresponding author
  2. Daniel Hain
  3. Denise Sternlicht
  4. Eduardo Moreno  Is a corresponding author
  5. Konrad Basler  Is a corresponding author
  1. University of Zurich, Switzerland
  2. University of Bern, Switzerland
  3. Champalimaud Research Center, Portugal

Abstract

The Toll pathway regulates the cellular response to infection via the transcriptional upregulation of antimicrobial peptides. In Drosophila, apart from its role in innate immunity, this pathway has also been reported to be important for the elimination of loser cells in a process referred to as cell competition, which can be locally triggered by secreted factors released from winner cells. In this work we provide evidence that the inhibition of Toll signaling not only increases the fitness of loser cells, but also bestows a clonal growth advantage on wild-type cells. We further demonstrate that this growth advantage depends on basal infection levels since it is no longer present under axenic conditions but exacerbated upon intense pathogen exposure. Thus, the Toll pathway functions as a fine-tuned pro-apoptotic and anti-proliferative regulator, underlining the existence of a trade-off between innate immunity and growth during development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Federico Germani

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    For correspondence
    federico.germani@uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5604-0437
  2. Daniel Hain

    Institute of Cell Biology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Denise Sternlicht

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Eduardo Moreno

    Champalimaud Research Center, Lisbon, Portugal
    For correspondence
    eduardo.moreno@research.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5040-452X
  5. Konrad Basler

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    For correspondence
    kb@imls.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.

Funding

Forschungskredit Candoc University of Zurich

  • Federico Germani

Swiss National Science Foundation

  • Daniel Hain

Swiss National Science Foundation

  • Eduardo Moreno

ERC

  • Daniel Hain

ERC

  • Eduardo Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Germani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,374
    views
  • 639
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Federico Germani
  2. Daniel Hain
  3. Denise Sternlicht
  4. Eduardo Moreno
  5. Konrad Basler
(2018)
The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner
eLife 7:e39939.
https://doi.org/10.7554/eLife.39939

Share this article

https://doi.org/10.7554/eLife.39939

Further reading

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarová ... Marie Macůrková
    Research Article Updated

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.

    1. Developmental Biology
    2. Neuroscience
    Bridget M Curran, Kelsey R Nickerson ... Le Ma
    Research Article

    The dorsal funiculus in the spinal cord relays somatosensory information to the brain. It is made of T-shaped bifurcation of dorsal root ganglion (DRG) sensory axons. Our previous study has shown that Slit signaling is required for proper guidance during bifurcation, but loss of Slit does not affect all DRG axons. Here, we examined the role of the extracellular molecule Netrin-1 (Ntn1). Using wholemount staining with tissue clearing, we showed that mice lacking Ntn1 had axons escaping from the dorsal funiculus at the time of bifurcation. Genetic labeling confirmed that these misprojecting axons come from DRG neurons. Single axon analysis showed that loss of Ntn1 did not affect bifurcation but rather altered turning angles. To distinguish their guidance functions, we examined mice with triple deletion of Ntn1, Slit1, and Slit2 and found a completely disorganized dorsal funiculus. Comparing mice with different genotypes using immunolabeling and single axon tracing revealed additive guidance errors, demonstrating the independent roles of Ntn1 and Slit. Moreover, the same defects were observed in embryos lacking their cognate receptors. These in vivo studies thus demonstrate the presence of multi-factorial guidance mechanisms that ensure proper formation of a common branched axonal structure during spinal cord development.