Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement

  1. Julie Corre
  2. Ruud van Zessen
  3. Michaël Loureïro
  4. Tommaso Patriarchi
  5. Lin Tian
  6. Vincent Pascoli
  7. Christian Lüscher  Is a corresponding author
  1. University of Geneva, Switzerland
  2. University of California, Davis, United States

Abstract

The dopamine (DA) hypothesis posits the increase of mesolimbic dopamine levels as a defining commonality of addictive drugs, initially causing reinforcement, eventually leading to compulsive consumption. While much experimental evidence from psychostimulants supports this hypothesis, it has been challenged for opioid reinforcement. Here, we monitor genetically encoded DA and calcium indicators as well as cFos in mice to reveal that heroin activates DA neurons located in the medial part of the VTA, preferentially projecting to the medial shell of the nucleus accumbens (NAc). Chemogenetic and optogenetic manipulations of VTA DA or GABA neurons establish a causal link to heroin reinforcement. Inhibition of DA neurons blocked heroin self-administration, while heroin inhibited optogenetic self-stimulation of DA neurons. Likewise, heroin occluded the self-inhibition of VTA GABA neurons. Together, these experiments support a model of disinhibition of a subset of VTA DA neurons in opioid reinforcement.

Data availability

The raw data are available via Zenodo (https://zenodo.org/record/1471574#.W9K7YfaYSUk)

The following data sets were generated

Article and author information

Author details

  1. Julie Corre

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Ruud van Zessen

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Michaël Loureïro

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5915-5627
  4. Tommaso Patriarchi

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lin Tian

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7012-6926
  6. Vincent Pascoli

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Lüscher

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    For correspondence
    Christian.Luscher@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7917-4596

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_170266)

  • Christian Lüscher

European Commission (MeSSI)

  • Christian Lüscher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with Swiss law (LPA). All of the animals were handled according to approved institutional animal care and use committee of Unige. The protocol was approved by the Committee on the Ethics of Animal Experiments of canton of Geneva (Permit Number: GE-128-16). Every effort was made to minimize suffering.

Copyright

© 2018, Corre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,458
    views
  • 1,382
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julie Corre
  2. Ruud van Zessen
  3. Michaël Loureïro
  4. Tommaso Patriarchi
  5. Lin Tian
  6. Vincent Pascoli
  7. Christian Lüscher
(2018)
Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement
eLife 7:e39945.
https://doi.org/10.7554/eLife.39945

Share this article

https://doi.org/10.7554/eLife.39945

Further reading

    1. Neuroscience
    Shuo Zhang, Yan Tian ... Haiyan Wu
    Research Article

    Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.

    1. Genetics and Genomics
    2. Neuroscience
    Akanksha Bafna, Gareth Banks ... Patrick M Nolan
    Research Article

    The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light–12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.