Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement

  1. Julie Corre
  2. Ruud van Zessen
  3. Michaël Loureïro
  4. Tommaso Patriarchi
  5. Lin Tian
  6. Vincent Pascoli
  7. Christian Lüscher  Is a corresponding author
  1. University of Geneva, Switzerland
  2. University of California, Davis, United States

Abstract

The dopamine (DA) hypothesis posits the increase of mesolimbic dopamine levels as a defining commonality of addictive drugs, initially causing reinforcement, eventually leading to compulsive consumption. While much experimental evidence from psychostimulants supports this hypothesis, it has been challenged for opioid reinforcement. Here, we monitor genetically encoded DA and calcium indicators as well as cFos in mice to reveal that heroin activates DA neurons located in the medial part of the VTA, preferentially projecting to the medial shell of the nucleus accumbens (NAc). Chemogenetic and optogenetic manipulations of VTA DA or GABA neurons establish a causal link to heroin reinforcement. Inhibition of DA neurons blocked heroin self-administration, while heroin inhibited optogenetic self-stimulation of DA neurons. Likewise, heroin occluded the self-inhibition of VTA GABA neurons. Together, these experiments support a model of disinhibition of a subset of VTA DA neurons in opioid reinforcement.

Data availability

The raw data are available via Zenodo (https://zenodo.org/record/1471574#.W9K7YfaYSUk)

The following data sets were generated

Article and author information

Author details

  1. Julie Corre

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Ruud van Zessen

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Michaël Loureïro

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5915-5627
  4. Tommaso Patriarchi

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lin Tian

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7012-6926
  6. Vincent Pascoli

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Lüscher

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    For correspondence
    Christian.Luscher@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7917-4596

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_170266)

  • Christian Lüscher

European Commission (MeSSI)

  • Christian Lüscher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with Swiss law (LPA). All of the animals were handled according to approved institutional animal care and use committee of Unige. The protocol was approved by the Committee on the Ethics of Animal Experiments of canton of Geneva (Permit Number: GE-128-16). Every effort was made to minimize suffering.

Reviewing Editor

  1. Lisa M Monteggia, UT Southwestern Medical Center, United States

Publication history

  1. Received: July 11, 2018
  2. Accepted: October 17, 2018
  3. Accepted Manuscript published: October 30, 2018 (version 1)
  4. Version of Record published: October 30, 2018 (version 2)

Copyright

© 2018, Corre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,920
    Page views
  • 1,114
    Downloads
  • 68
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julie Corre
  2. Ruud van Zessen
  3. Michaël Loureïro
  4. Tommaso Patriarchi
  5. Lin Tian
  6. Vincent Pascoli
  7. Christian Lüscher
(2018)
Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement
eLife 7:e39945.
https://doi.org/10.7554/eLife.39945

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Xin-Yao Sun et al.
    Research Article Updated

    Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Bilal Cakir, In-Hyun Park
    Insight

    Fusing brain organoids with blood vessel organoids leads to the incorporation of non-neural endothelial cells and microglia into the brain organoids.