Mycobacterium tuberculosis SatS is a chaperone for the SecA2 protein export pathway

  1. Brittany K Miller
  2. Ryan Hughes
  3. Lauren S Ligon
  4. Nathan W Rigel
  5. Seidu Malik
  6. Brandon R Anjuwon-Foster
  7. James C Sacchettini
  8. Miriam Braunstein  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. Texas A&M University, United States

Abstract

The SecA2 protein export system is critical for the virulence of Mycobacterium tuberculosis. However, the mechanism of this export pathway remains unclear. Through a screen for suppressors of a secA2 mutant, we identified a new player in the mycobacterial SecA2 pathway that we named SatS for SecA2 (two) Suppressor. In M. tuberculosis, SatS is required for the export of a subset of SecA2 substrates and for growth in macrophages. We further identify a role for SatS as a protein export chaperone. SatS exhibits multiple properties of a chaperone, including the ability to bind to and protect substrates from aggregation. Our structural studies of SatS reveal a distinct combination of a new fold and hydrophobic grooves resembling preprotein-binding sites of the SecB chaperone. These results are significant in better defining a molecular pathway for M. tuberculosis pathogenesis and in expanding our appreciation of the diversity among chaperones and protein export systems.

Data availability

All data generated and analysed during this study are included in the manuscript and supporting files. Figure supplements have been provided for Figures 1, 2, 5, and 8. Two additional supplementary tables describe the primers and plasmids used in this study. SatS C domain X-ray structure validation details are described in Figure 8-figure supplement 1 and have been deposited in PDB under the accession codes 6DRQ and 6DNM.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Brittany K Miller

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ryan Hughes

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren S Ligon

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nathan W Rigel

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Seidu Malik

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandon R Anjuwon-Foster

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James C Sacchettini

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Miriam Braunstein

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    braunste@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1180-0030

Funding

National Institute of Allergy and Infectious Diseases (AI054540)

  • Brittany K Miller
  • Lauren S Ligon
  • Nathan W Rigel
  • Seidu Malik
  • Miriam Braunstein

National Institute of Allergy and Infectious Diseases (A-0015)

  • Ryan Hughes
  • James C Sacchettini

Welch Foundation (A-0015)

  • Ryan Hughes
  • James C Sacchettini

University of North Carolina (Graduate School Disseration Award)

  • Brittany K Miller

National Institute of General Medical Sciences (GM055336)

  • Brandon R Anjuwon-Foster

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and experimental protocols were in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the University of North Carolina (protocol number 15-018.0).

Copyright

© 2019, Miller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,117
    views
  • 354
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brittany K Miller
  2. Ryan Hughes
  3. Lauren S Ligon
  4. Nathan W Rigel
  5. Seidu Malik
  6. Brandon R Anjuwon-Foster
  7. James C Sacchettini
  8. Miriam Braunstein
(2019)
Mycobacterium tuberculosis SatS is a chaperone for the SecA2 protein export pathway
eLife 8:e40063.
https://doi.org/10.7554/eLife.40063

Share this article

https://doi.org/10.7554/eLife.40063

Further reading

    1. Microbiology and Infectious Disease
    Srinivasan Vijay, Nguyen Le Hoai Bao ... Nguyen Thuy Thuong
    Research Article

    Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15–60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.