Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation

  1. Lucy LeBlanc
  2. Bum-Kyu Lee
  3. Andy C Yu
  4. Mijeong Kim
  5. Aparna V Kambhampati
  6. Shannon M Dupont
  7. Davide Seruggia
  8. Byoung U Ryu
  9. Stuart H Orkin
  10. Jonghwan Kim  Is a corresponding author
  1. The University of Texas at Austin, United States
  2. Harvard Medical School, United States

Abstract

Approximately 30% of embryonic stem cells (ESCs) die after exiting self-renewal, but regulators of this process are not well known. Yap1 is a Hippo pathway transcriptional effector that plays numerous roles in development and cancer. However, its functions in ESC differentiation remain poorly characterized. We first reveal that ESCs lacking Yap1 experience massive cell death upon the exit from self-renewal. We subsequently show that Yap1 contextually protects differentiating, but not self-renewing, ESC from hyperactivation of the apoptotic cascade. Mechanistically, Yap1 strongly activates anti-apoptotic genes via cis-regulatory elements while mildly suppressing pro-apoptotic genes, which moderates the level of mitochondrial priming that occurs during differentiation. Individually modulating the expression of single apoptosis-related genes targeted by Yap1 is sufficient to augment or hinder survival during differentiation. Our demonstration of the context-dependent pro-survival functions of Yap1 during ESC differentiation contributes to our understanding of the balance between survival and death during cell fate changes.

Data availability

Sequencing data have been deposited in GEO under accession code GSE112606.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lucy LeBlanc

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bum-Kyu Lee

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andy C Yu

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mijeong Kim

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aparna V Kambhampati

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shannon M Dupont

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Davide Seruggia

    Pediatric Oncology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Byoung U Ryu

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Stuart H Orkin

    Pediatric Oncology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonghwan Kim

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    For correspondence
    jonghwankim@mail.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9919-9843

Funding

National Institute of General Medical Sciences (R01GM112722)

  • Jonghwan Kim

Burroughs Wellcome Fund

  • Jonghwan Kim

National Science Foundation GRFP

  • Lucy LeBlanc

Hamilton Seed Grant

  • Lucy LeBlanc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, LeBlanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,080
    views
  • 563
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucy LeBlanc
  2. Bum-Kyu Lee
  3. Andy C Yu
  4. Mijeong Kim
  5. Aparna V Kambhampati
  6. Shannon M Dupont
  7. Davide Seruggia
  8. Byoung U Ryu
  9. Stuart H Orkin
  10. Jonghwan Kim
(2018)
Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation
eLife 7:e40167.
https://doi.org/10.7554/eLife.40167

Share this article

https://doi.org/10.7554/eLife.40167

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Alfonso Aguilera, Marta Nieto
    Insight

    A tailored cocktail of genes can reprogram a subset of progenitors to no longer produce glial cells and instead develop into neurons involved in motor control.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Kyusang Yoo, Young-Woo Jo ... Young-Yun Kong
    Research Article

    Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs’ response to peripheral nerve injury.