Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation

  1. Lucy LeBlanc
  2. Bum-Kyu Lee
  3. Andy C Yu
  4. Mijeong Kim
  5. Aparna V Kambhampati
  6. Shannon M Dupont
  7. Davide Seruggia
  8. Byoung U Ryu
  9. Stuart H Orkin
  10. Jonghwan Kim  Is a corresponding author
  1. The University of Texas at Austin, United States
  2. Harvard Medical School, United States

Abstract

Approximately 30% of embryonic stem cells (ESCs) die after exiting self-renewal, but regulators of this process are not well known. Yap1 is a Hippo pathway transcriptional effector that plays numerous roles in development and cancer. However, its functions in ESC differentiation remain poorly characterized. We first reveal that ESCs lacking Yap1 experience massive cell death upon the exit from self-renewal. We subsequently show that Yap1 contextually protects differentiating, but not self-renewing, ESC from hyperactivation of the apoptotic cascade. Mechanistically, Yap1 strongly activates anti-apoptotic genes via cis-regulatory elements while mildly suppressing pro-apoptotic genes, which moderates the level of mitochondrial priming that occurs during differentiation. Individually modulating the expression of single apoptosis-related genes targeted by Yap1 is sufficient to augment or hinder survival during differentiation. Our demonstration of the context-dependent pro-survival functions of Yap1 during ESC differentiation contributes to our understanding of the balance between survival and death during cell fate changes.

Data availability

Sequencing data have been deposited in GEO under accession code GSE112606.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lucy LeBlanc

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bum-Kyu Lee

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andy C Yu

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mijeong Kim

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aparna V Kambhampati

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shannon M Dupont

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Davide Seruggia

    Pediatric Oncology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Byoung U Ryu

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Stuart H Orkin

    Pediatric Oncology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonghwan Kim

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    For correspondence
    jonghwankim@mail.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9919-9843

Funding

National Institute of General Medical Sciences (R01GM112722)

  • Jonghwan Kim

Burroughs Wellcome Fund

  • Jonghwan Kim

National Science Foundation GRFP

  • Lucy LeBlanc

Hamilton Seed Grant

  • Lucy LeBlanc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Received: July 17, 2018
  2. Accepted: December 17, 2018
  3. Accepted Manuscript published: December 18, 2018 (version 1)
  4. Version of Record published: December 27, 2018 (version 2)

Copyright

© 2018, LeBlanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,002
    views
  • 557
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucy LeBlanc
  2. Bum-Kyu Lee
  3. Andy C Yu
  4. Mijeong Kim
  5. Aparna V Kambhampati
  6. Shannon M Dupont
  7. Davide Seruggia
  8. Byoung U Ryu
  9. Stuart H Orkin
  10. Jonghwan Kim
(2018)
Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation
eLife 7:e40167.
https://doi.org/10.7554/eLife.40167

Share this article

https://doi.org/10.7554/eLife.40167

Further reading

    1. Stem Cells and Regenerative Medicine
    Jing-Ping Wang, Chun-Hao Hung ... C-K James Shen
    Research Article

    A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.