Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues

  1. Eglantine Heude
  2. Marketa Tesarova
  3. Elizabeth M Sefton
  4. Estelle Jullian
  5. Noritaka Adachi
  6. Alexandre Grimaldi
  7. Tomas Zikmund
  8. Jozef Kaiser
  9. Gabrielle Kardon
  10. Robert G Kelly
  11. Shahragim Tajbakhsh  Is a corresponding author
  1. Institut Pasteur, France
  2. Brno University of Technology, Czech Republic
  3. University of Utah, United States
  4. Aix-Marseille Université, France

Abstract

In vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1- and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eglantine Heude

    Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marketa Tesarova

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizabeth M Sefton

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6481-612X
  4. Estelle Jullian

    CNRS UMR 7288, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Noritaka Adachi

    CNRS UMR 7288, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9482-8436
  6. Alexandre Grimaldi

    Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomas Zikmund

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Jozef Kaiser

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Gabrielle Kardon

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert G Kelly

    CNRS UMR 7288, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Shahragim Tajbakhsh

    Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
    For correspondence
    shahragim.tajbakhsh@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1809-7202

Funding

Institut Pasteur

  • Eglantine Heude
  • Alexandre Grimaldi
  • Shahragim Tajbakhsh

National Institutes of Health

  • Elizabeth M Sefton
  • Gabrielle Kardon

Agence Nationale de la Recherche

  • Eglantine Heude
  • Alexandre Grimaldi
  • Shahragim Tajbakhsh

Centre National de la Recherche Scientifique

  • Eglantine Heude
  • Estelle Jullian
  • Noritaka Adachi
  • Alexandre Grimaldi
  • Robert G Kelly
  • Shahragim Tajbakhsh

Association Française contre les Myopathies

  • Eglantine Heude
  • Alexandre Grimaldi
  • Shahragim Tajbakhsh

Central European Institute of Technology

  • Marketa Tesarova
  • Tomas Zikmund
  • Jozef Kaiser

March of Dimes Foundation

  • Elizabeth M Sefton
  • Gabrielle Kardon

Fondation pour la Recherche Médicale

  • Estelle Jullian
  • Noritaka Adachi
  • Robert G Kelly

Fondation Leducq

  • Estelle Jullian
  • Noritaka Adachi
  • Robert G Kelly

Yamada Science Foundation

  • Noritaka Adachi
  • Robert G Kelly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were handled as per European Community guidelines and the ethics committee of the Institut Pasteur (CTEA) approved protocols. (APAFIS#6354-20160809l2028839)

Copyright

© 2018, Heude et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,417
    views
  • 623
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eglantine Heude
  2. Marketa Tesarova
  3. Elizabeth M Sefton
  4. Estelle Jullian
  5. Noritaka Adachi
  6. Alexandre Grimaldi
  7. Tomas Zikmund
  8. Jozef Kaiser
  9. Gabrielle Kardon
  10. Robert G Kelly
  11. Shahragim Tajbakhsh
(2018)
Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues
eLife 7:e40179.
https://doi.org/10.7554/eLife.40179

Share this article

https://doi.org/10.7554/eLife.40179

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.