Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation

Abstract

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 minute, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and Supplementary File 1. The full dataset for proteomic analyses reported in Figures 6 and Supplementary File 1 can be found at https://www.thewakefieldlab.com/ms; the significantly reduced protein IDs for each RNAi experiment were interrogated using a Gene Ontology (GO) classifier (GOTermMapper (https://go.princeton.edu/cgi-bin/GOTermMapper), concentrating on the GO terms ""cell division"" (GO:0051301), ""mitotic cell cycle"" (GO:0000278) and ""chromosome segregation"" (GO:0007059). Source data files have been provided for Figures 1, 4, 5, 7, 8, and 9.

Article and author information

Author details

  1. Claudia Pellacani

    Department of Biology and Biotechnology Charles Darwin, University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Elisabetta Bucciarelli

    Institute of Molecular Biology and Pathology, University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Fioranna Renda

    Department of Biology and Biotechnology Charles Darwin, University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Hayward

    Biosciences/Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Antonella Palena

    Institute of Molecular Biology and Pathology, University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Jack Chen

    Biosciences/Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Silvia Bonaccorsi

    Department of Biology and Biotechnology Charles Darwin, University of Rome, Roma, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. James G Wakefield

    Biosciences/Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Maurizio Gatti

    Department of Biology and Biotechnology Charles Darwin, University of Rome, Rome, Italy
    For correspondence
    maurizio.gatti@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3777-300X
  10. Maria Patrizia Somma

    Institute of Molecular Biology and Pathology, University of Rome, Rome, Italy
    For correspondence
    patrizia.somma@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.

Funding

Associazione Italiana per la Ricerca sul Cancro (IG16020)

  • Maurizio Gatti

Ministero dell'Istruzione, dell'Università e della Ricerca

  • Silvia Bonaccorsi

Biotechnology and Biological Sciences Research Council (BB/K017837/1)

  • James G Wakefield

Associazione Italiana per la Ricerca sul Cancro (IG20528)

  • Maurizio Gatti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jon Pines, Institute of Cancer Research Research, United Kingdom

Publication history

  1. Received: July 22, 2018
  2. Accepted: November 14, 2018
  3. Accepted Manuscript published: November 26, 2018 (version 1)
  4. Version of Record published: December 10, 2018 (version 2)

Copyright

© 2018, Pellacani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,858
    Page views
  • 295
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudia Pellacani
  2. Elisabetta Bucciarelli
  3. Fioranna Renda
  4. Daniel Hayward
  5. Antonella Palena
  6. Jack Chen
  7. Silvia Bonaccorsi
  8. James G Wakefield
  9. Maurizio Gatti
  10. Maria Patrizia Somma
(2018)
Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation
eLife 7:e40325.
https://doi.org/10.7554/eLife.40325

Further reading

    1. Cancer Biology
    2. Cell Biology
    Qiangqiang Liu et al.
    Research Article Updated

    DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.

    1. Cell Biology
    Gina M LoMastro et al.
    Research Article

    Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events.