Molecular mechanisms that stabilize short term synaptic plasticity during presynaptic homeostatic plasticity
Abstract
Presynaptic homeostatic plasticity (PHP) compensates for impaired postsynaptic neurotransmitter receptor function through a rapid, persistent adjustment of neurotransmitter release, an effect that can exceed 200%. An unexplained property of PHP is the preservation of short-term plasticity (STP), thereby stabilizing activity-dependent synaptic information transfer. We demonstrate that the dramatic potentiation of presynaptic release during PHP is achieved while simultaneously maintaining a constant ratio of primed to super-primed synaptic vesicles, thereby preserving STP. Mechanistically, genetic, biochemical and electrophysiological evidence argue that a constant ratio of primed to super-primed synaptic vesicles is achieved by the concerted action of three proteins: Unc18, Syntaxin1A and RIM. Our data support a model based on the regulated availability of Unc18 at the presynaptic active zone, a process that is restrained by Syntaxin1A and facilitated by RIM. As such, regulated vesicle priming/super-priming enables PHP to stabilize both synaptic gain and the activity-dependent transfer of information at a synapse.
Data availability
Data generate during this study are included in the manuscript and supporting files and tables.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (R35NS097212)
- Graeme W Davis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Ortega et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,964
- views
-
- 468
- downloads
-
- 40
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.