1. Neuroscience
Download icon

Central Dicer-miR-103/107 controls developmental switch of POMC progenitors into NPY neurons and impacts glucose homeostasis

  1. Sophie Croizier
  2. Soyoung Park
  3. Julien Maillard
  4. Sebastien G Bouret  Is a corresponding author
  1. University of Southern California, United States
Research Article
  • Cited 14
  • Views 1,401
  • Annotations
Cite this article as: eLife 2018;7:e40429 doi: 10.7554/eLife.40429

Abstract

Proopiomelanocortin (POMC) neurons are major negative regulators of energy balance. A distinct developmental property of POMC neurons is that they can adopt an orexigenic neuropeptide Y (NPY) phenotype. However, the mechanisms underlying the differentiation of Pomc progenitors remain unknown. Here, we show that the loss of the microRNA (miRNA)-processing enzyme Dicer in POMC neurons causes metabolic defects, an age-dependent decline in the number of Pomc mRNA-expressing cells, and an increased proportion of Pomc progenitors acquiring a NPY phenotype. miRNome microarray screening further identified miR-103/107 as candidates that may be involved in the maturation of Pomc progenitors. In vitro inhibition of miR-103/107 causes a reduction in the number of Pomc-expressing cells and increases the proportion of Pomc progenitors differentiating into NPY neurons. Moreover, in utero silencing of miR-103/107 causes perturbations in glucose homeostasis. Together, these data suggest a role for prenatal miR-103/107 in the maturation of Pomc progenitors and glucose homeostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sophie Croizier

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0076-1008
  2. Soyoung Park

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Maillard

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastien G Bouret

    University of Southern California, Los Angeles, United States
    For correspondence
    sbouret@chla.usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4174-9769

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK84142)

  • Sebastien G Bouret

National Institute of Diabetes and Digestive and Kidney Diseases (DK102780)

  • Sebastien G Bouret

National Institute of Diabetes and Digestive and Kidney Diseases (DK118401)

  • Sebastien G Bouret

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: CHLA IACUC protocol #303-16

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: July 24, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 12, 2018 (version 1)
  4. Version of Record published: October 26, 2018 (version 2)

Copyright

© 2018, Croizier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,401
    Page views
  • 237
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Gordon H Petty et al.
    Research Article

    Neocortical sensory areas have associated primary and secondary thalamic nuclei. While primary nuclei transmit sensory information to cortex, secondary nuclei remain poorly understood. We recorded juxtasomally from secondary somatosensory (POm) and visual (LP) nuclei of awake mice while tracking whisking and pupil size. POm activity correlated with whisking, but not precise whisker kinematics. This coarse movement modulation persisted after facial paralysis and thus was not due to sensory reafference. This phenomenon also continued during optogenetic silencing of somatosensory and motor cortex and after lesion of superior colliculus, ruling out a motor efference copy mechanism. Whisking and pupil dilation were strongly correlated, possibly reflecting arousal. Indeed LP, which is not part of the whisker system, tracked whisking equally well, further indicating that POm activity does not encode whisker movement per se. The semblance of movement-related activity is likely instead a global effect of arousal on both nuclei. We conclude that secondary thalamus monitors behavioral state, rather than movement, and may exist to alter cortical activity accordingly.

    1. Neuroscience
    Jorrit S Montijn et al.
    Tools and Resources Updated

    Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.