Structures of translationally inactive mammalian ribosomes

  1. Alan Brown  Is a corresponding author
  2. Matthew R Baird
  3. Matthew CJ Yip
  4. Jason Murray
  5. Sichen Shao  Is a corresponding author
  1. Harvard Medical School, United States
  2. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

The cellular levels and activities of ribosomes directly regulate gene expression during numerous physiological processes. The mechanisms that globally repress translation are incompletely understood. Here, we use electron cryomicroscopy to analyze inactive ribosomes isolated from mammalian reticulocytes, the penultimate stage of red blood cell differentiation. We identify two types of ribosomes that are translationally repressed by protein interactions. The first comprises ribosomes sequestered with elongation factor 2 (eEF2) by SERPINE mRNA binding protein 1 (SERBP1) occupying the ribosomal mRNA entrance channel. The second type are translationally repressed by a novel ribosome-binding protein, interferon-related developmental regulator 2 (IFRD2), which spans the P and E sites and inserts a C-terminal helix into the mRNA exit channel to preclude translation. IFRD2 binds ribosomes with a tRNA occupying a noncanonical binding site, the 'Z site', on the ribosome. These structures provide functional insights into how ribosomal interactions may suppress translation to regulate gene expression.

Data availability

All cryo-EM maps and models have been deposited in EMDB under accession codes 9234, 9235, 9236, 9237, 9239, 9240, 9241 and 9242. All models have been deposited in PDB under accession codes 6MTB, 6MTC, 6MTD and 6MTE.

The following data sets were generated

Article and author information

Author details

  1. Alan Brown

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    alan_brown@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew R Baird

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew CJ Yip

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason Murray

    Structural Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sichen Shao

    Department of Cell Biology, Harvard Medical School, Boston, United States
    For correspondence
    sichen_shao@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2679-5537

Funding

Harvard Medical School (N/A)

  • Alan Brown
  • Matthew R Baird
  • Matthew CJ Yip
  • Sichen Shao

International Retinal Research Foundation (N/A)

  • Alan Brown

E. Matilda Ziegler Foundation for the Blind (N/A)

  • Alan Brown

Charles H. Hood Foundation (N/A)

  • Sichen Shao

Richard and Susan Smith Family Foundation (N/A)

  • Sichen Shao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Publication history

  1. Received: July 26, 2018
  2. Accepted: October 12, 2018
  3. Accepted Manuscript published: October 24, 2018 (version 1)
  4. Version of Record published: November 9, 2018 (version 2)

Copyright

© 2018, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,866
    Page views
  • 876
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan Brown
  2. Matthew R Baird
  3. Matthew CJ Yip
  4. Jason Murray
  5. Sichen Shao
(2018)
Structures of translationally inactive mammalian ribosomes
eLife 7:e40486.
https://doi.org/10.7554/eLife.40486

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Claudia C Carcamo et al.
    Research Article Updated

    One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.

    1. Structural Biology and Molecular Biophysics
    Marina Schrecker et al.
    Research Article

    The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3’ end (3’ ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3’ ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.