Structures of translationally inactive mammalian ribosomes
Abstract
The cellular levels and activities of ribosomes directly regulate gene expression during numerous physiological processes. The mechanisms that globally repress translation are incompletely understood. Here, we use electron cryomicroscopy to analyze inactive ribosomes isolated from mammalian reticulocytes, the penultimate stage of red blood cell differentiation. We identify two types of ribosomes that are translationally repressed by protein interactions. The first comprises ribosomes sequestered with elongation factor 2 (eEF2) by SERPINE mRNA binding protein 1 (SERBP1) occupying the ribosomal mRNA entrance channel. The second type are translationally repressed by a novel ribosome-binding protein, interferon-related developmental regulator 2 (IFRD2), which spans the P and E sites and inserts a C-terminal helix into the mRNA exit channel to preclude translation. IFRD2 binds ribosomes with a tRNA occupying a noncanonical binding site, the 'Z site', on the ribosome. These structures provide functional insights into how ribosomal interactions may suppress translation to regulate gene expression.
Data availability
All cryo-EM maps and models have been deposited in EMDB under accession codes 9234, 9235, 9236, 9237, 9239, 9240, 9241 and 9242. All models have been deposited in PDB under accession codes 6MTB, 6MTC, 6MTD and 6MTE.
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9234).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9235).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9236).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9237).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9239).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9240).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9241).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9242).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTB).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTC).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTD).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTE).
Article and author information
Author details
Funding
Harvard Medical School (N/A)
- Alan Brown
- Matthew R Baird
- Matthew CJ Yip
- Sichen Shao
International Retinal Research Foundation (N/A)
- Alan Brown
E. Matilda Ziegler Foundation for the Blind (N/A)
- Alan Brown
Charles H. Hood Foundation (N/A)
- Sichen Shao
Richard and Susan Smith Family Foundation (N/A)
- Sichen Shao
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Nahum Sonenberg, McGill University, Canada
Publication history
- Received: July 26, 2018
- Accepted: October 12, 2018
- Accepted Manuscript published: October 24, 2018 (version 1)
- Version of Record published: November 9, 2018 (version 2)
Copyright
© 2018, Brown et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,866
- Page views
-
- 876
- Downloads
-
- 35
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Structural Biology and Molecular Biophysics
One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.
-
- Structural Biology and Molecular Biophysics
The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3’ end (3’ ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3’ ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.