Structures of translationally inactive mammalian ribosomes
Abstract
The cellular levels and activities of ribosomes directly regulate gene expression during numerous physiological processes. The mechanisms that globally repress translation are incompletely understood. Here, we use electron cryomicroscopy to analyze inactive ribosomes isolated from mammalian reticulocytes, the penultimate stage of red blood cell differentiation. We identify two types of ribosomes that are translationally repressed by protein interactions. The first comprises ribosomes sequestered with elongation factor 2 (eEF2) by SERPINE mRNA binding protein 1 (SERBP1) occupying the ribosomal mRNA entrance channel. The second type are translationally repressed by a novel ribosome-binding protein, interferon-related developmental regulator 2 (IFRD2), which spans the P and E sites and inserts a C-terminal helix into the mRNA exit channel to preclude translation. IFRD2 binds ribosomes with a tRNA occupying a noncanonical binding site, the 'Z site', on the ribosome. These structures provide functional insights into how ribosomal interactions may suppress translation to regulate gene expression.
Data availability
All cryo-EM maps and models have been deposited in EMDB under accession codes 9234, 9235, 9236, 9237, 9239, 9240, 9241 and 9242. All models have been deposited in PDB under accession codes 6MTB, 6MTC, 6MTD and 6MTE.
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9234).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9235).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9236).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9237).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9239).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9240).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9241).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9242).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTB).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTC).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTD).
-
Data from: Structures of translationally inactive mammalian ribosomesPublicly available at the RCSB Protein Data Bank (accession no: 6MTE).
Article and author information
Author details
Funding
Harvard Medical School (N/A)
- Alan Brown
- Matthew R Baird
- Matthew CJ Yip
- Sichen Shao
International Retinal Research Foundation (N/A)
- Alan Brown
E. Matilda Ziegler Foundation for the Blind (N/A)
- Alan Brown
Charles H. Hood Foundation (N/A)
- Sichen Shao
Richard and Susan Smith Family Foundation (N/A)
- Sichen Shao
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Brown et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,666
- views
-
- 1,130
- downloads
-
- 113
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Structural Biology and Molecular Biophysics
Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.
-
- Structural Biology and Molecular Biophysics
Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.