A whole lifespan mouse multi-tissue DNA methylation clock

  1. Margarita V Meer
  2. Dmitriy I Podolskiy
  3. Alexander Tyshkovskiy
  4. Vadim N Gladyshev  Is a corresponding author
  1. Brigham and Women's Hospital, Harvard Medical School, United States

Abstract

Age predictors based on DNA methylation levels at a small set of CpG sites, DNAm clocks, have been developed for humans and extended to several other species. Three currently available versions of mouse DNAm clocks were either created for individual tissues or tuned towards young ages. Here, we constructed a robust multi-tissue age predictor based on 435 CpG sites, which covers the entire mouse lifespan and remains unbiased with respect to any particular age group. It can successfully detect the effects of certain lifespan-modulating interventions on DNAm age as well as the rejuvenation effect related to the transition from fibroblasts to iPSCs. We have carried out comparative analyses of available mouse DNAm clocks, which revealed their broad applicability, but also certain limitations to the use of tissue-specific and multi-tissue age predictors. Together, these tools should help address diverse questions in aging research.

Data availability

Sequencing data have been deposited in GEO under accession code GSE121141

The following data sets were generated

Article and author information

Author details

  1. Margarita V Meer

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dmitriy I Podolskiy

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Tyshkovskiy

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vadim N Gladyshev

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    vgladyshev@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0372-7016

Funding

National Institute on Aging (AG021518)

  • Vadim N Gladyshev

National Institute on Aging (AG047200)

  • Vadim N Gladyshev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Publication history

  1. Received: August 1, 2018
  2. Accepted: November 13, 2018
  3. Accepted Manuscript published: November 14, 2018 (version 1)
  4. Version of Record published: December 10, 2018 (version 2)

Copyright

© 2018, Meer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,749
    Page views
  • 708
    Downloads
  • 60
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarita V Meer
  2. Dmitriy I Podolskiy
  3. Alexander Tyshkovskiy
  4. Vadim N Gladyshev
(2018)
A whole lifespan mouse multi-tissue DNA methylation clock
eLife 7:e40675.
https://doi.org/10.7554/eLife.40675

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Zhanwu Zhu, Jingjing Liu ... Bo Cheng
    Research Article

    Dynamic regulation of transcription is crucial for the cellular responses to various environmental or developmental cues. Gdown1 is a ubiquitously expressed, RNA polymerase II (Pol II) interacting protein, essential for the embryonic development of metazoan. It tightly binds Pol II in vitro and competitively blocks the binding of TFIIF and possibly other transcriptional regulatory factors, yet its cellular functions and regulatory circuits remain unclear. Here, we show that human GDOWN1 strictly localizes in the cytoplasm of various types of somatic cells and exhibits a potent resistance to the imposed driving force for its nuclear localization. Combined with the genetic and microscope-based approaches, two types of the functionally coupled and evolutionally conserved localization regulatory motifs are identified, including the CRM1-dependent nucleus export signal (NES) and a novel Cytoplasmic Anchoring Signal (CAS) that mediates its retention outside of the nuclear pore complexes (NPC). Mutagenesis of CAS alleviates GDOWN1’s cytoplasmic retention, thus unlocks its nucleocytoplasmic shuttling properties, and the increased nuclear import and accumulation of GDOWN1 results in a drastic reduction of both Pol II and its associated global transcription levels. Importantly, the nuclear translocation of GDOWN1 occurs in response to the oxidative stresses, and the ablation of GDOWN1 significantly weakens the cellular tolerance. Collectively, our work uncovers the molecular basis of GDOWN1’s subcellular localization and a novel cellular strategy of modulating global transcription and stress-adaptation via controlling the nuclear translocation of GDOWN1.

    1. Chromosomes and Gene Expression
    Jiahui Zhang, Cheng-Zhong Zhang
    Insight

    In a departure from previous findings, new results suggest that free-floating pieces of DNA which carry additional copies of cancer-driving genes do not tend to cluster or have increased transcription.