Natural variation in sugar tolerance associates with changes in signaling and mitochondrial ribosome biogenesis

  1. Richard G Melvin
  2. Nicole Lamichane
  3. Essi Havula
  4. Krista Kokki
  5. Charles Soeder
  6. Corbin D Jones
  7. Ville Hietakangas  Is a corresponding author
  1. University of Minnesota, United States
  2. University of Helsinki, Finland
  3. The University of North Carolina at Chapel Hill, United States

Abstract

How dietary selection impacts genome evolution to define the optimal range of nutrient intake is a poorly understood question with medical relevance. We have addressed this question by analyzing Drosophila simulans and sechellia, recently diverged species with differential diet choice. D. sechellia larvae, specialized to a nutrient scarce diet, did not survive on sugar rich conditions, while the generalist species D. simulans was sugar tolerant. Sugar tolerance in D. simulans was a tradeoff for performance on low energy diet and was associated with global reprogramming of metabolic gene expression. Hybridization and phenotype-based introgression revealed the genomic regions of D. simulans that were sufficient for sugar tolerance. These regions included genes that are involved in mitochondrial ribosome biogenesis and intracellular signaling, such as PPP1R15/Gadd34 and SERCA, which contributed to sugar tolerance. In conclusion, genomic variation affecting genes involved in global metabolic control defines the optimal range for dietary macronutrient composition.

Data availability

Genome sequencing and RNA sequencing datasets have bee placed into NCBI SRA archive, Study # SRP158000. A link is provided for reviewers in the Materials and Methods.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Richard G Melvin

    Faculty of Biological and Environmental Sciences, University of Minnesota, Duluth, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6428-6763
  2. Nicole Lamichane

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Essi Havula

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Krista Kokki

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles Soeder

    Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Corbin D Jones

    Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ville Hietakangas

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    For correspondence
    ville.hietakangas@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9900-7549

Funding

Suomen Akatemia (286767)

  • Ville Hietakangas

Novo Nordisk Foundation (NNF16OC0021460)

  • Ville Hietakangas

Sigrid Juséliuksen Säätiö

  • Ville Hietakangas

Finnish Diabetes Foundation

  • Ville Hietakangas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Melvin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,230
    views
  • 318
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard G Melvin
  2. Nicole Lamichane
  3. Essi Havula
  4. Krista Kokki
  5. Charles Soeder
  6. Corbin D Jones
  7. Ville Hietakangas
(2018)
Natural variation in sugar tolerance associates with changes in signaling and mitochondrial ribosome biogenesis
eLife 7:e40841.
https://doi.org/10.7554/eLife.40841

Share this article

https://doi.org/10.7554/eLife.40841

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.