The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage
Abstract
The transcription factors TFE3 and TFEB cooperate to regulate autophagy induction and lysosome biogenesis in response to starvation. Here we demonstrate that DNA damage activates TFE3 and TFEB in a p53 and mTORC1 dependent manner. RNA-Seq analysis of TFEB/TFE3 double-knockout cells exposed to etoposide reveals a profound dysregulation of the DNA damage response, including upstream regulators and downstream p53 targets. TFE3 and TFEB contribute to sustain p53-dependent response by stabilizing p53 protein levels. In TFEB/TFE3 DKOs, p53 half-life is significantly decreased due to elevated Mdm2 levels. Transcriptional profiles of genes involved in lysosome membrane permeabilization and cell death pathways are dysregulated in TFEB/TFE3-depleted cells. Consequently, prolonged DNA damage results in impaired LMP and apoptosis induction. Finally, expression of multiple genes implicated in cell cycle control is altered in TFEB/TFE3 DKOs, revealing a previously unrecognized role of TFEB and TFE3 in the regulation of cell cycle checkpoints in response to stress.
Data availability
RNA-seq data has been deposited in GEO under accession number GSE118518.The Metadata sheets have been included as supplementary files
-
DNA Damage Response in control and TFEB/TFE3 double knockout cells treated with EtoposideNCBI Gene Expression Omnibus, GSE118518.
Article and author information
Author details
Funding
National Institutes of Health
- Eutteum Jeong
- Owen A Brady
- Jose A Martina
- Mehdi Pirooznia
- Iker Tunc
- Rosa Puertollano
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 8,355
- views
-
- 986
- downloads
-
- 73
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.