Cellular cartography of the organ of Corti based on optical tissue clearing and machine learning

18 figures, 5 tables and 1 additional file

Figures

Figure 1 with 2 supplements
Optical tissue clearing and whole-mount immunolabeling of the organ of Corti.

(A) Time course and individual steps of tissue clearing with or without immunostaining. (B) Three-dimensional imaging of the organ of Corti within the temporal bone. Top view (left), lateral view …

https://doi.org/10.7554/eLife.40946.002
Figure 1—figure supplement 1
Protocol of modified Sca/eS.

(A) Comparison of optical transparency of mouse brain samples using 3DISCO, iDISCO, CLARITY and CUBIC. Scale, 3 mm. (B) Relationship between imaging depths and RIs using the decalcified cochlea as a …

https://doi.org/10.7554/eLife.40946.003
Figure 1—figure supplement 2
Application of modified ScaleS to other tissues.

(A) Tubular bone samples were treated with modified ScaleS and CB-perfusion. CB-perfusion was designed for whole-body imaging (see Appendix 1 for the detail). Transmitted light Images before and …

https://doi.org/10.7554/eLife.40946.004
Figure 2 with 2 supplements
Computational analysis of hair cell distribution in the organ of Corti.

(A) Detection of single hair cells stained with anti-MYO7A. The border between hair cells can be clearly detected. Scale bar, 10 μm. (B) Sequential steps in reconstruction of the linearized voxel …

https://doi.org/10.7554/eLife.40946.006
Figure 2—figure supplement 1
Manual counting of lost hair cells and auditory brainstem-evoked response (ABR) in mice with age-related and noise-induced hearing loss.

(A) Numbers of total IHCs and OHCs of C57BL/6J mice at PND 5, PND 60, and PND 360. (n = 4 (PND 5), 4 (PND 60), and 3 (PND 360). One-way ANOVA with Bonferroni's post hoc test, ***p < 0.001.) (B) ABR …

https://doi.org/10.7554/eLife.40946.007
Figure 2—figure supplement 2
Three-dimensional presentation of hair cell distribution projected to X-Y and Y-Z planes.

Positions of Inner hair cells were sampled with regular intervals and the position data from different samples were overlaid. Hair cells from different samples were plotted as dots with different …

https://doi.org/10.7554/eLife.40946.008
Figure 3 with 1 supplement
Spatial pattern of hair cell loss.

(A) Pseudo-color presentation of hair cell loss along the longitudinal axis of the organ of Corti (PND 30, 60, and 120 and noise exposure at PND 60). Each row represents a single cochlear sample. …

https://doi.org/10.7554/eLife.40946.013
Figure 3—figure supplement 1
Longitudinal and radial distribution of hair cell loss in the organ of Corti.

(A) Pseudo-color presentation of the OHC loss frequency along the radial axis. Each row represents a single cochlear sample. The sample IDs were written on the left of the map. Note that the …

https://doi.org/10.7554/eLife.40946.014
Figure 4 with 1 supplement
Model-based analysis of clustered cell loss.

(A) Evaluation of the extent of clustered cell loss by comparison with the extent of clustering based on a model of random cell loss. The extent of cell clustering in the experimental data was much …

https://doi.org/10.7554/eLife.40946.016
Figure 4—figure supplement 1
Simulation analysis of clustered cell loss.

(A) A pair of ‘probability matrix’ (upper panel) and ‘cell matrix’ (lower panel). The intensities of elements in the ‘probability matrix’ indicate the probability of cell loss for the next round of …

https://doi.org/10.7554/eLife.40946.017
Efficient mapping of subcellular pathology and multiple cellular components.

(A) Automated detection of areas with variable degrees of hair cell loss, combined with evaluation of subcellular pathology. All sites of hair cell loss (white squares) were selected, and changes in …

https://doi.org/10.7554/eLife.40946.019
Appendix 2—figure 1
First the line passing through the centers of two images were generated, and the line passing through the center of the image overlap and perpendicular to the first line was created (the center line).

Distance of each pixel to the center line was defined as x. The pixel that has the largest distance was selected and its x value was normalized to be 1.

https://doi.org/10.7554/eLife.40946.025
Appendix 2—Figure 2
Distribution of intensity peaks within the plane of the first and second principal components.

The first principal component matched the longitudinal axis, while the second matched the radial axis.

https://doi.org/10.7554/eLife.40946.026
Appendix 2—Figure 3
The method of stitching two arcs.

Among the dots on the two arcs, the open dots were removed and the closed dots were fitted with a spline curve.

https://doi.org/10.7554/eLife.40946.027
Appendix 2—figure 4
Extraction of cell candidates by template matching.

Left; Template matching with the small template image (upper left) was performed for individual x-y images within the image stack. Right; Detection and labeling of correlation peaks distributed …

https://doi.org/10.7554/eLife.40946.028
Appendix 2—figure 5
Functions of the third and fourth machine learning models.

Cell candidates detected by the first and the second machine learning models were further categorized into three rows by the third model (cells marked by dots with different colors correspond to the …

https://doi.org/10.7554/eLife.40946.029
Appendix 2—figure 6
Comparison of detection efficiencies between a standard image processing method and our method (Paired t-test, both p < 0.0001, n = 10 linearized whole cochlear images).
https://doi.org/10.7554/eLife.40946.030
Appendix 2—figure 7
Comparison of 3D watershed and our machine learning based method.

There are many duplicate count and false detection with 3D watershed method.

https://doi.org/10.7554/eLife.40946.031
Appendix 2—figure 8
An example of fitting the increasing distance between IHCs and the modiolus to a smooth spiral.

The line with the minimum sum of squared errors was chosen to be the longitudinal axis of the cylindrical coordinate system.

https://doi.org/10.7554/eLife.40946.032
Appendix 2—figure 9
An example of inner hair cell locations (black dots) viewed from the axial direction.

The angle (φ) was measured from the line (red line) connecting the center of the spiral and the inner hair cell located at the end of the apex (green dot).

https://doi.org/10.7554/eLife.40946.033
Appendix 2—figure 10
Evaluation of the extent of correlation between two curves in the plane of φ-p.

Within this plane, the positions of spiral A and B were aligned. First, the shift in φ was adjusted (middle). Subsequently, the shift in p was adjusted (right).

https://doi.org/10.7554/eLife.40946.034
Appendix 2—figure 11
Representative examples of hair cell images where manual estimation of cell loss was difficult.

The number of lost cells is difficult to estimate when the size of cell-negative area increases in the basal turn (left). Disorganized rows of OHCs were frequently observed in the apical turn …

https://doi.org/10.7554/eLife.40946.035
Appendix 2—figure 12
Procedures of obtaining parameters necessary for radial alignment (along y-axis) of cell centers.

Calculation of an averaged y position of the cell group (a red circle) and a vertical spread of the cell group (a red vertical line). These two parameters were calculated in the area (colored in …

https://doi.org/10.7554/eLife.40946.036
Appendix 2—figure 13
Procedures of obtaining parameters necessary for longitudinal alignment (along x-axis) of cell centers.

Calculation of the horizontal distance between adjacent cells (red horizontal line). The nearest cell in the rectangular area (colored in gray) was selected for the calculation. The variables x0 and …

https://doi.org/10.7554/eLife.40946.037

Tables

Table 1
Details of machine learning models (related to Figure 2).
https://doi.org/10.7554/eLife.40946.010
ModelsTypeAlgorithmConfigurationUsePredictor
IHC* 1BinaryGentle Boost300 classification treesReduction of noiseArea, barycentric coordinates, maximum correlation coefficients, maximum intensity, same data set of the nearest neighbor group and relative position of the nearest neighbor group
IHC* 2BinaryRandom Forest300 classification treesDetection of cellsAdding to the above, prediction score by ‘IHC* 1’ of itself and that of adjacent groups in six directions, relative position of the adjacent groups, and cropped image††
OHC 1BinaryGentle Boost300 classification treesReduction of noiseSame as ‘IHC* 1’
OHC 2BinaryRandom Forest300 classification treesDetection of cellsSame as ‘IHC* 2’
OHC 3MulticlassConvolutional Neural NetworkFrom the input, convolutional layer (filter size 5, number 60), ReLU§ layer, fully connected layer, Softmax Layer (three classes), and output.Estimation of belonging rowCropped image (39 × 69 pixels in width and height)
OHC 4BinaryConvolutional Neural NetworkFrom the input, convolutional layer (filter size 5, number 60), ReLU§ layer, convolutional layer (filter size 5, number 20), ReLU§ layer, fully connected layer, Softmax Layer (two classes), and output.Detection of cells in spacesCropped image (39 × 69 pixels in width and height)
  1. *. IHC, inner hair cell.

    . OHC, outer hair cell.

  2. . Classification type.

    §. Rectified Linear Unit.

  3. . Adjacent groups in direction of 0–60°, 60–120°, 120–180°, 180–240°, 240–300°, 300–360° with the y-axis as an initial line in the x-y plane.

    ††. Initial image size is 21 × 69 pixels in width and height. The image is resized in 7 × 23 then reshaped in 1 × 161.

Table 2
Detection efficiency of hair cells (related to Figure 2).*
https://doi.org/10.7554/eLife.40946.011

Inner hair cell
Detect. (n)Undetect. (n)Err. detect. (n)§Recover RateAccuracy rate††
Our Method576 ± 3313 ± 122 ± 20.979 ± 0.0210.997 ± 0.003
3D Watershed424 ± 98152 ± 82110 ± 780.733 ± 0.1490.818 ± 0.100


Outer hair cell
Detect. (n)Undetect. (n)Err. Detect. (n)§Recover RateAccuracy rate††
Our Method‡‡1989 ± 13324 ± 136 ± 40.988 ± 0.0060.997 ± 0.002
Principle 1 Only§§1925 ± 13169 ± 4116 ± 130.966 ± 0.0210.992 ± 0.006
3D Watershed1493 ± 197496 ± 111760 ± 3810.748 ± 0.0640.682 ± 0.103
  1. *. Data from 10 samples (PND30: two sample, PND60: three sample, ACL: two sample, NCL: three sample). Data are expressed as means ± SD.

    . Detection number.

  2. . Undetected number.

    §. Erroneous detection number.

  3. . Recover rate of manually identified hair cells by the automated detection algorithm (almost synonymous with recall).

    ††. The number of hair cells identified by both manual and automated detection divided by the number of hair cells identified by automated detection (almost synonymous with precision).

  4. ‡‡.The proposed method in this study (principle 1 + principle 2).

    §§. The method using the first half of the proposed method. For details please see ‘Principles of auto-detection by machine learning’ in Appendix 2.

Table 3
Inter-operator percent match in void space detection (related to Experimental procedures).
https://doi.org/10.7554/eLife.40946.012
Inter-operator percent matchNumber of detected void space
Sample numberA-BB-CA-CAuto††-HC‡‡BothAuto††-onlyHC‡‡-only
1*0.9600.8800.9170.9202411
20.8980.9170.9060.9528422
30.9230.8850.9580.8892430
4§0.9230.8820.8460.9265031
Overall0.9160.8980.8970.93118294
  1. *. Sample 1, two months old, total loss rate of OHCs: 1.7%.

    . Sample 2, two months old with noise exposure, total loss rate of OHCs: 8.1%.

  2. ‡. Sample 3, one month old, total loss rate of OHCs: 2.2%.

    §. Sample 4, four months old, total loss rate of OHCs: 4.2%.

  3. . Skilled human operators (A, B, and C).

    ††. Auto, automated OHC loss counting program.

  4. ‡‡. HC, human consensus.

Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional
information
Genetic
reagent
(M. musculus)
C57BL/6JSankyo Lab (JAPAN)PRID:MGI:5658686
Genetic
reagent
(M. musculus)
CBA/CaSankyo Lab (JAPAN)PRID:MGI:2159826
Genetic
reagent
(M. musculus)
Thy1-GFP line-MJackson LabPRID:MGI:3766828
Genetic
 reagent
(M. musculus)
GO-AteamPMID: 19720993Dr. M Yamamoto (Kyoto University, Japan)
AntibodyRabbit polyclonal anti-
Myosin VIIa
Proteus Biosciencescat# 25–6790
PRID:AB_10013626
IHC (1:100)
AntibodyMouse monoclonal anti-Neurofilament 200SIGMAcat# N5389
PRID:AB_260781
IHC (1:100)
AntibodyMouse monoclonal anti-SOX-2EMD Milliporecat# MAB4343
PRID:AB_827493
IHC (1:200)
AntibodyMouse monoclonal anti-CTBP2BD Biosciencecat# 612044
PRID:AB_399431
IHC (1:100)
AntibodyGuinea pig polyclonal anti-VGLUT3PMID: 20034056IHC (1:500), Dr. H
Hioki (Juntendo
University, Japan)
AntibodyAlexa Fluor 488-conjugated mouse monoclonal anti-VE cadherineBiosciencecat# 16-1441-81
PRID:AB_15604224
IHC (1:500)
Chemical
compound, drug
Rhodamine phalloidinInvitrogencat# R415IHC (1:500)
Chemical
compound, drug
Triton X-100Nakalai-tesquecat# 12967–45
Chemical
compound, drug
UreaSIGMAcat# U0631-1KG
Chemical
 compound, drug
N,N,N',N'-Tetrakis (2-eydroxypropyl) ethylendiamineTCIcat# T0781
Chemical
compound, drug
D-sucroseWakocat# 196–00015
Chemical
compound, drug
2,2',2''-nitrilotriethanolWakocat# 145–05605
Chemical
compound, drug
DichloromethaneSIGMAcat# 270997–100 ML
Chemical
compound, drug
TetrahydrofuranSIGMAcat# 186562–100 ML
Chemical
compound, drug
Dibenzyl EtherWakocat# 022–01466
Chemical
compound, drug
MethanolWakocat# 132–06471
Chemical
compound, drug
D-glucoseSIGMAcat# G8270-100G
Chemical
compound, drug
D-sorbitolSIGMAcat# S1816-1KG
Chemical
compound, drug
ThiodiethanolWakocat# 205–00936
Chemical
compound, drug
AcrylamideWakocat# 011–08015
Chemical
compound, drug
Bis-acrylamideSIGMAcat# 146072–100G
Chemical
compound, drug
VA-044 initiatorWakocat# 225–02111
Chemical
compound, drug
Sodium dodecyl
sulfate
TCIcat# I0352
Chemical
compound, drug
FocusClearCelExplorer Labscat# F101-KIT
Chemical
compound, drug
GlycerolWakocat# 075–00616
Chemical
compound, drug
Dimethyl sulfoxideWakocat# 043–07216
Chemical
compound, drug
N-acetyl-L-hydroxyprolineTCIcat# A2265
Chemical
compound, drug
Methyl-β-cyclodextrinTCIcat# M1356
Chemical
compound, drug
γ-cyclodextrinTCIcat# C0869
Chemical
compound, drug
Tween-20Wakocat# 167–11515
Software,
algorithm
ImageJNIHPRID: SCR_003070
Software,
algorithm
GraphPad Prism 6GraphPad SoftwarePRID: SCR_002798
Software,
algorithm
MATLABMathWorksPRID: SCR_001622
Software,
algorithm
Microsoft ExcelMicrosoftPRID: SCR_016137
Software,
algorithm
Adobe
Illustrator
AdobePRID: SCR_010279
Software,
algorithm
Signal
processor
Nihon KoudenNeuropack MEB2208
OtherMATLAB codesThis paperhttps://github.com/okabe-lab/cochlea-analyzer
Other25x water-
immersion objective lens
NikonN25X-APO-MP
Other25x water-
immersion objective lens
OlympusXPLN25XWMP
OtherSound speakerTOAHDF-261–8
OtherPower amplifierTOAIP-600D
OtherCondenser microphoneRIONUC-31 and UN14
OtherSound calibratorRIONNC-74
OtherNoise generatorRIONAA-61B
OtherDual channel
programmable
filter
NF corporation3624
Table 4
Number of training and test dataset, and performance evaluation of machine learning models (related to Figure 2).
https://doi.org/10.7554/eLife.40946.021
ModelTrainingTestRecallPrecisionF score
Total (n)Positive labels (n)Total (n)Positive labels (n)
IHC* 1607,9545906578,85157410.9610.9410.951
IHC* 237,57611,97718,10457530.9770.9860.981
OHC 11,112,65920,5761,099,51919,9590.9780.9140.945
OHC 228,70220,57627,18519,9590.9590.9790.969
OHC 320,416Row1: 6706
Row2: 6745
Row3: 6965
19,594Row1: 6421
Row2: 6450
Row3: 6723
0.9930.9930.993
OHC 44114136529909050.9200.9460.933
  1. *. IHC, inner hair cell.

    . OHC, outer hair cell.

  2. . Calculated by micro-average of recall and precision (Sokolova M and Lapalme G, 2009)

Additional files

Download links