Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites

  1. Juliane Fischer
  2. Sebastian Y Müller
  3. Tina Netzker
  4. Nils Jäger
  5. Agnieszka Gacek-Matthews
  6. Kirstin Scherlach
  7. Maria C Stroe
  8. María García-Altares
  9. Francesco Pezzini
  10. Hanno Schoeler
  11. Michael Reichelt
  12. Jonathan Gershenzon
  13. Mario KC Krespach
  14. Ekaterina Shelest
  15. Volker Schroeckh
  16. Vito Valiante
  17. Thorsten Heinzel
  18. Christian Hertweck
  19. Joseph Strauss  Is a corresponding author
  20. Axel A Brakhage  Is a corresponding author
  1. Leibniz Institute for Natural Product Research and Infection Biology (HKI), Germany
  2. Hans Knöll Institute, Germany
  3. Friedrich Schiller University Jena, Germany
  4. BOKU-University of Natural Resources and Life Sciences, Austria
  5. Max Planck Institute for Chemical Ecology, Germany

Abstract

The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model we aim at understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. By genome-wide ChIP-seq analysis of acetylated histone H3 we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, amino acid and nitrogen metabolism, signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.

Data availability

ChIP-seq data were deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-5819.

The following data sets were generated

Article and author information

Author details

  1. Juliane Fischer

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  2. Sebastian Y Müller

    Systems Biology and Bioinformatics, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  3. Tina Netzker

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  4. Nils Jäger

    Department of Biochemistry, Friedrich Schiller University Jena, Jena, Germany
    Competing interests
    No competing interests declared.
  5. Agnieszka Gacek-Matthews

    Department for Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Kirstin Scherlach

    Department of Biomolecular Chemistry, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  7. Maria C Stroe

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  8. María García-Altares

    Department of Biomolecular Chemistry, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  9. Francesco Pezzini

    Systems Biology and Bioinformatics, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  10. Hanno Schoeler

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  11. Michael Reichelt

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  12. Jonathan Gershenzon

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  13. Mario KC Krespach

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  14. Ekaterina Shelest

    Systems Biology and Bioinformatics, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  15. Volker Schroeckh

    Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  16. Vito Valiante

    Leibniz Research Group - Biobricks of Microbial Natural Product Syntheses, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  17. Thorsten Heinzel

    Department of Biochemistry, Friedrich Schiller University Jena, Jena, Germany
    Competing interests
    No competing interests declared.
  18. Christian Hertweck

    Department of Biomolecular Chemistry, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  19. Joseph Strauss

    Department for Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    joseph.strauss@boku.ac.at
    Competing interests
    No competing interests declared.
  20. Axel A Brakhage

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    For correspondence
    axel.brakhage@hki-jena.de
    Competing interests
    Axel A Brakhage, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8814-4193

Funding

Deutsche Forschungsgemeinschaft (SFB 1127)

  • Tina Netzker
  • Nils Jäger
  • Ekaterina Shelest

Bundesministerium für Bildung und Forschung (InfectControl2020)

  • Maria C Stroe

Horizon 2020 Framework Programme (IF-EF; Project reference 700036)

  • María García-Altares

Leibniz-Gemeinschaft

  • Juliane Fischer

Deutsche Forschungsgemeinschaft (GSC 214)

  • Mario KC Krespach

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Fischer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,271
    views
  • 644
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juliane Fischer
  2. Sebastian Y Müller
  3. Tina Netzker
  4. Nils Jäger
  5. Agnieszka Gacek-Matthews
  6. Kirstin Scherlach
  7. Maria C Stroe
  8. María García-Altares
  9. Francesco Pezzini
  10. Hanno Schoeler
  11. Michael Reichelt
  12. Jonathan Gershenzon
  13. Mario KC Krespach
  14. Ekaterina Shelest
  15. Volker Schroeckh
  16. Vito Valiante
  17. Thorsten Heinzel
  18. Christian Hertweck
  19. Joseph Strauss
  20. Axel A Brakhage
(2018)
Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites
eLife 7:e40969.
https://doi.org/10.7554/eLife.40969

Share this article

https://doi.org/10.7554/eLife.40969

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.

    1. Microbiology and Infectious Disease
    Julia A Hotinger, Ian W Campbell ... Matthew K Waldor
    Research Article

    Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen’s colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.