Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites

  1. Juliane Fischer
  2. Sebastian Y Müller
  3. Tina Netzker
  4. Nils Jäger
  5. Agnieszka Gacek-Matthews
  6. Kirstin Scherlach
  7. Maria C Stroe
  8. María García-Altares
  9. Francesco Pezzini
  10. Hanno Schoeler
  11. Michael Reichelt
  12. Jonathan Gershenzon
  13. Mario KC Krespach
  14. Ekaterina Shelest
  15. Volker Schroeckh
  16. Vito Valiante
  17. Thorsten Heinzel
  18. Christian Hertweck
  19. Joseph Strauss  Is a corresponding author
  20. Axel A Brakhage  Is a corresponding author
  1. Leibniz Institute for Natural Product Research and Infection Biology (HKI), Germany
  2. Hans Knöll Institute, Germany
  3. Friedrich Schiller University Jena, Germany
  4. BOKU-University of Natural Resources and Life Sciences, Austria
  5. Max Planck Institute for Chemical Ecology, Germany

Abstract

The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model we aim at understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. By genome-wide ChIP-seq analysis of acetylated histone H3 we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, amino acid and nitrogen metabolism, signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.

Data availability

ChIP-seq data were deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-5819.

The following data sets were generated

Article and author information

Author details

  1. Juliane Fischer

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  2. Sebastian Y Müller

    Systems Biology and Bioinformatics, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  3. Tina Netzker

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  4. Nils Jäger

    Department of Biochemistry, Friedrich Schiller University Jena, Jena, Germany
    Competing interests
    No competing interests declared.
  5. Agnieszka Gacek-Matthews

    Department for Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Kirstin Scherlach

    Department of Biomolecular Chemistry, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  7. Maria C Stroe

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  8. María García-Altares

    Department of Biomolecular Chemistry, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  9. Francesco Pezzini

    Systems Biology and Bioinformatics, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  10. Hanno Schoeler

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  11. Michael Reichelt

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  12. Jonathan Gershenzon

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  13. Mario KC Krespach

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    Competing interests
    No competing interests declared.
  14. Ekaterina Shelest

    Systems Biology and Bioinformatics, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  15. Volker Schroeckh

    Department of Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  16. Vito Valiante

    Leibniz Research Group - Biobricks of Microbial Natural Product Syntheses, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  17. Thorsten Heinzel

    Department of Biochemistry, Friedrich Schiller University Jena, Jena, Germany
    Competing interests
    No competing interests declared.
  18. Christian Hertweck

    Department of Biomolecular Chemistry, Hans Knöll Institute, Jena, Germany
    Competing interests
    No competing interests declared.
  19. Joseph Strauss

    Department for Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    joseph.strauss@boku.ac.at
    Competing interests
    No competing interests declared.
  20. Axel A Brakhage

    Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
    For correspondence
    axel.brakhage@hki-jena.de
    Competing interests
    Axel A Brakhage, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8814-4193

Funding

Deutsche Forschungsgemeinschaft (SFB 1127)

  • Tina Netzker
  • Nils Jäger
  • Ekaterina Shelest

Bundesministerium für Bildung und Forschung (InfectControl2020)

  • Maria C Stroe

Horizon 2020 Framework Programme (IF-EF; Project reference 700036)

  • María García-Altares

Leibniz-Gemeinschaft

  • Juliane Fischer

Deutsche Forschungsgemeinschaft (GSC 214)

  • Mario KC Krespach

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Fischer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,235
    views
  • 637
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juliane Fischer
  2. Sebastian Y Müller
  3. Tina Netzker
  4. Nils Jäger
  5. Agnieszka Gacek-Matthews
  6. Kirstin Scherlach
  7. Maria C Stroe
  8. María García-Altares
  9. Francesco Pezzini
  10. Hanno Schoeler
  11. Michael Reichelt
  12. Jonathan Gershenzon
  13. Mario KC Krespach
  14. Ekaterina Shelest
  15. Volker Schroeckh
  16. Vito Valiante
  17. Thorsten Heinzel
  18. Christian Hertweck
  19. Joseph Strauss
  20. Axel A Brakhage
(2018)
Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites
eLife 7:e40969.
https://doi.org/10.7554/eLife.40969

Share this article

https://doi.org/10.7554/eLife.40969

Further reading

    1. Microbiology and Infectious Disease
    Emma Brown, Gemma Swinscoe ... Stephen Griffin
    Research Article Updated

    Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.

    1. Microbiology and Infectious Disease
    Yucheng Liang, Jean-Emmanuel Hugonnet ... Michel Arthur
    Research Advance

    Peptidoglycan (PG) is a giant macromolecule that completely surrounds bacterial cells and prevents lysis in hypo-osmotic environments. This net-like macromolecule is made of glycan strands linked to each other by two types of transpeptidases that form either 4→3 (PBPs) or 3→3 (LDTs) cross-links. Previously, we devised a heavy isotope-based PG full labeling method coupled to mass spectrometry to determine the mode of insertion of new subunits into the expanding PG network (Atze et al., 2022). We showed that PG polymerization operates according to different modes for the formation of the septum and of the lateral cell walls, as well as for bacterial growth in the presence or absence of β-lactams in engineered strains that can exclusively rely on LDTs for PG cross-linking when drugs are present. Here, we apply our method to the resolution of the kinetics of the reactions leading to the covalent tethering of the Braun lipoprotein (Lpp) to PG and the subsequent hydrolysis of that same covalent link. We find that Lpp and disaccharide-peptide subunits are independently incorporated into the expanding lateral cell walls. Newly synthesized septum PG appears to contain small amounts of tethered Lpp. LDTs did mediate intense shuffling of Lpp between PG stems leading to a dynamic equilibrium between the PG-tethered and free forms of Lpp.