High resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types

  1. Landry Blanc
  2. Isaac B Daudelin
  3. Brendan K Podell
  4. Pei-Yu Chen
  5. Matthew Zimmerman
  6. Amanda J Martinot
  7. Rada M Savic
  8. Brendan Prideaux
  9. Veronique Anne Dartois  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States
  2. Colorado State University, United States
  3. Harvard Medical School, United States
  4. University of California, San Francisco, United States

Abstract

Understanding the distribution patterns of antibiotics at the site of infection is paramount to selecting adequate drug regimens and developing new antibiotics. Tuberculosis (TB) lung lesions are made of various immune cell types, some of which harbor persistent forms of the pathogen, Mycobacterium tuberculosis. By combining high resolution MALDI MSI with histology staining and quantitative image analysis in rabbits with active TB, we have mapped the distribution of a fluoroquinolone at high resolution, and identified the immune-pathological factors driving its heterogeneous penetration within TB lesions, in relation to where bacteria reside. We find that macrophage content, distance from lesion border and extent of necrosis drive the uneven fluoroquinolone penetration. Preferential uptake in macrophages and foamy macrophages, where persistent bacilli reside, compared to other immune cells present in TB granulomas, was recapitulated in vitro using primary human cells. A nonlinear modeling approach was developed to help predict the observed drug behavior in TB lesions. This work constitutes a methodological advance for the co-localization of drugs and infectious agents at high spatial resolution in diseased tissues, which can be applied to other diseases with complex immunopathology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3, 4 and 5. Model codes are provided for the base model and full model.

Article and author information

Author details

  1. Landry Blanc

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Isaac B Daudelin

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brendan K Podell

    Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pei-Yu Chen

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Zimmerman

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda J Martinot

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rada M Savic

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brendan Prideaux

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Veronique Anne Dartois

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    For correspondence
    veronique.dartois@rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9470-5009

Funding

National Institutes of Health (U01-HL131072)

  • Veronique Anne Dartois

National Institutes of Health (R01-AI111967)

  • Veronique Anne Dartois

Bill and Melinda Gates Foundation (OPP1174780)

  • Veronique Anne Dartois

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Ethics

Animal experimentation: All animal studies were performed in Biosafety Level 3 facilities and approved by the Institutional Animal Care and Use Committee (IACUC protocol number 16016) of the New Jersey Medical School, Rutgers University, Newark, NJ, under the guidelines and regulations of the National Institutes of Health.

Version history

  1. Received: August 15, 2018
  2. Accepted: November 13, 2018
  3. Accepted Manuscript published: November 14, 2018 (version 1)
  4. Version of Record published: November 21, 2018 (version 2)

Copyright

© 2018, Blanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,668
    Page views
  • 316
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Landry Blanc
  2. Isaac B Daudelin
  3. Brendan K Podell
  4. Pei-Yu Chen
  5. Matthew Zimmerman
  6. Amanda J Martinot
  7. Rada M Savic
  8. Brendan Prideaux
  9. Veronique Anne Dartois
(2018)
High resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types
eLife 7:e41115.
https://doi.org/10.7554/eLife.41115

Share this article

https://doi.org/10.7554/eLife.41115

Further reading

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.

    1. Microbiology and Infectious Disease
    Markéta Častorálová, Jakub Sýs ... Tomas Ruml
    Research Article Updated

    For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.