High resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types

  1. Landry Blanc
  2. Isaac B Daudelin
  3. Brendan K Podell
  4. Pei-Yu Chen
  5. Matthew Zimmerman
  6. Amanda J Martinot
  7. Rada M Savic
  8. Brendan Prideaux
  9. Veronique Anne Dartois  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States
  2. Colorado State University, United States
  3. Harvard Medical School, United States
  4. University of California, San Francisco, United States

Abstract

Understanding the distribution patterns of antibiotics at the site of infection is paramount to selecting adequate drug regimens and developing new antibiotics. Tuberculosis (TB) lung lesions are made of various immune cell types, some of which harbor persistent forms of the pathogen, Mycobacterium tuberculosis. By combining high resolution MALDI MSI with histology staining and quantitative image analysis in rabbits with active TB, we have mapped the distribution of a fluoroquinolone at high resolution, and identified the immune-pathological factors driving its heterogeneous penetration within TB lesions, in relation to where bacteria reside. We find that macrophage content, distance from lesion border and extent of necrosis drive the uneven fluoroquinolone penetration. Preferential uptake in macrophages and foamy macrophages, where persistent bacilli reside, compared to other immune cells present in TB granulomas, was recapitulated in vitro using primary human cells. A nonlinear modeling approach was developed to help predict the observed drug behavior in TB lesions. This work constitutes a methodological advance for the co-localization of drugs and infectious agents at high spatial resolution in diseased tissues, which can be applied to other diseases with complex immunopathology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3, 4 and 5. Model codes are provided for the base model and full model.

Article and author information

Author details

  1. Landry Blanc

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Isaac B Daudelin

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brendan K Podell

    Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pei-Yu Chen

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Zimmerman

    Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda J Martinot

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rada M Savic

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brendan Prideaux

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Veronique Anne Dartois

    Public Health Research Insitute, Rutgers, The State University of New Jersey, Newark, United States
    For correspondence
    veronique.dartois@rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9470-5009

Funding

National Institutes of Health (U01-HL131072)

  • Veronique Anne Dartois

National Institutes of Health (R01-AI111967)

  • Veronique Anne Dartois

Bill and Melinda Gates Foundation (OPP1174780)

  • Veronique Anne Dartois

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Ethics

Animal experimentation: All animal studies were performed in Biosafety Level 3 facilities and approved by the Institutional Animal Care and Use Committee (IACUC protocol number 16016) of the New Jersey Medical School, Rutgers University, Newark, NJ, under the guidelines and regulations of the National Institutes of Health.

Version history

  1. Received: August 15, 2018
  2. Accepted: November 13, 2018
  3. Accepted Manuscript published: November 14, 2018 (version 1)
  4. Version of Record published: November 21, 2018 (version 2)

Copyright

© 2018, Blanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,697
    views
  • 319
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Landry Blanc
  2. Isaac B Daudelin
  3. Brendan K Podell
  4. Pei-Yu Chen
  5. Matthew Zimmerman
  6. Amanda J Martinot
  7. Rada M Savic
  8. Brendan Prideaux
  9. Veronique Anne Dartois
(2018)
High resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types
eLife 7:e41115.
https://doi.org/10.7554/eLife.41115

Share this article

https://doi.org/10.7554/eLife.41115

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.