Flexible nitrogen utilisation by the metabolic generalist pathogen Mycobacterium tuberculosis

  1. Aleksandra Agapova
  2. Agnese Serafini
  3. Michael Petridis
  4. Debbie M Hunt
  5. Acely Garza-Garcia
  6. Charles D Sohaskey
  7. Luiz Pedro Sorio de Carvalho  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. Department of Veterans Affairs Medical Center, United States

Abstract

Bacterial metabolism is fundamental to survival and pathogenesis. We explore how Mycobacterium tuberculosis utilises amino acids as nitrogen sources, using a combination of bacterial physiology and stable isotope tracing coupled to mass spectrometry metabolomics methods. Our results define core properties of the nitrogen metabolic network from M. tuberculosis, such as: (i) the lack of homeostatic control of certain amino acid pool sizes; (ii) similar rates of utilisation of different amino acids as sole nitrogen sources; (iii) improved nitrogen utilisation from amino acids compared to ammonium; and (iv) co-metabolism of nitrogen sources. Finally, we discover that alanine dehydrogenase, is involved in ammonium assimilation in M. tuberculosis, in addition to its essential role in alanine utilisation as a nitrogen source. This study represents the first in-depth analysis of nitrogen source utilisation by M. tuberculosis and reveals a flexible metabolic network with characteristics that are likely product of evolution in the human host.

Data availability

Metabolomics data used on this study are available via Zenodo (DOI 10.5281/zenodo.2551162).

The following data sets were generated

Article and author information

Author details

  1. Aleksandra Agapova

    Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Agnese Serafini

    Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Petridis

    Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Debbie M Hunt

    Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Acely Garza-Garcia

    Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0307-0138
  6. Charles D Sohaskey

    Tuberculosis Research Lab, Department of Veterans Affairs Medical Center, Long Beach, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luiz Pedro Sorio de Carvalho

    Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    luiz.carvalho@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2875-4552

Funding

Wellcome (104785/B/14/Z)

  • Aleksandra Agapova
  • Agnese Serafini
  • Michael Petridis
  • Luiz Pedro Sorio de Carvalho

Wellcome (Francis Crick Institute Core funding (10060))

  • Debbie M Hunt
  • Acely Garza-Garcia
  • Luiz Pedro Sorio de Carvalho

Medical Research Council (Francis Crick Institute Core funding (10060))

  • Debbie M Hunt
  • Acely Garza-Garcia
  • Luiz Pedro Sorio de Carvalho

Cancer Research UK (Francis Crick Institute Core funding (10060))

  • Debbie M Hunt
  • Acely Garza-Garcia
  • Luiz Pedro Sorio de Carvalho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Version history

  1. Received: August 15, 2018
  2. Accepted: January 22, 2019
  3. Accepted Manuscript published: January 31, 2019 (version 1)
  4. Version of Record published: February 4, 2019 (version 2)

Copyright

© 2019, Agapova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,447
    views
  • 485
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandra Agapova
  2. Agnese Serafini
  3. Michael Petridis
  4. Debbie M Hunt
  5. Acely Garza-Garcia
  6. Charles D Sohaskey
  7. Luiz Pedro Sorio de Carvalho
(2019)
Flexible nitrogen utilisation by the metabolic generalist pathogen Mycobacterium tuberculosis
eLife 8:e41129.
https://doi.org/10.7554/eLife.41129

Share this article

https://doi.org/10.7554/eLife.41129

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.