Sucrose intensity coding and decision-making in rat gustatory cortices

  1. Esmeralda Fonseca
  2. Victor de Lafuente
  3. Sidney Simon
  4. Ranier Gutierrez  Is a corresponding author
  1. CINVESTAV, Mexico
  2. National Autonomous University of Mexico, Mexico
  3. Duke University, United States

Abstract

Sucrose's sweet intensity is one attribute contributing to the overconsumption of high-energy palatable foods. However, it is not known how sucrose intensity is encoded and used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats in a sucrose intensity discrimination task and found that sucrose evoked a widespread response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed the most information about sucrose's intensity, indicating that for sweetness the gustatory system used a compact and distributed code. Sucrose intensity was encoded in both firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the subject's choices, whereas all three regions tracked reward omission. Overall, these multimodal areas provide a neural representation of perceived sucrose intensity, and of task-related information underlying perceptual decision-making.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Esmeralda Fonseca

    Department of Pharmacology, CINVESTAV, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3697-9401
  2. Victor de Lafuente

    Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1047-1354
  3. Sidney Simon

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ranier Gutierrez

    Department of Pharmacology, CINVESTAV, Mexico City, Mexico
    For correspondence
    ranier@cinvestav.mx
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0289

Funding

Consejo Nacional de Ciencia y Tecnología (Problemas Nacionales 464)

  • Ranier Gutierrez

Productos Medix (3247)

  • Ranier Gutierrez

Consejo Nacional de Ciencia y Tecnología (FOINS 63)

  • Ranier Gutierrez

Consejo Nacional de Ciencia y Tecnología (FOINS 245)

  • Victor de Lafuente

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the CINVESTAV Institutional Animal Care and Use Committee (#0034-13)

Copyright

© 2018, Fonseca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,549
    views
  • 364
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Esmeralda Fonseca
  2. Victor de Lafuente
  3. Sidney Simon
  4. Ranier Gutierrez
(2018)
Sucrose intensity coding and decision-making in rat gustatory cortices
eLife 7:e41152.
https://doi.org/10.7554/eLife.41152

Share this article

https://doi.org/10.7554/eLife.41152

Further reading

    1. Neuroscience
    Hans Martin Kjer, Mariam Andersson ... Tim B Dyrby
    Research Article

    We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.

    1. Neuroscience
    Sergio Plaza-Alonso, Nicolas Cano-Astorga ... Lidia Alonso-Nanclares
    Research Article Updated

    The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.