1. Neuroscience
Download icon

Sucrose intensity coding and decision-making in rat gustatory cortices

  1. Esmeralda Fonseca
  2. Victor de Lafuente
  3. Sidney Simon
  4. Ranier Gutierrez  Is a corresponding author
  1. CINVESTAV, Mexico
  2. National Autonomous University of Mexico, Mexico
  3. Duke University, United States
Research Article
  • Cited 13
  • Views 1,851
  • Annotations
Cite this article as: eLife 2018;7:e41152 doi: 10.7554/eLife.41152


Sucrose's sweet intensity is one attribute contributing to the overconsumption of high-energy palatable foods. However, it is not known how sucrose intensity is encoded and used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats in a sucrose intensity discrimination task and found that sucrose evoked a widespread response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed the most information about sucrose's intensity, indicating that for sweetness the gustatory system used a compact and distributed code. Sucrose intensity was encoded in both firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the subject's choices, whereas all three regions tracked reward omission. Overall, these multimodal areas provide a neural representation of perceived sucrose intensity, and of task-related information underlying perceptual decision-making.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Esmeralda Fonseca

    Department of Pharmacology, CINVESTAV, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3697-9401
  2. Victor de Lafuente

    Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1047-1354
  3. Sidney Simon

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ranier Gutierrez

    Department of Pharmacology, CINVESTAV, Mexico City, Mexico
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0289


Consejo Nacional de Ciencia y Tecnología (Problemas Nacionales 464)

  • Ranier Gutierrez

Productos Medix (3247)

  • Ranier Gutierrez

Consejo Nacional de Ciencia y Tecnología (FOINS 63)

  • Ranier Gutierrez

Consejo Nacional de Ciencia y Tecnología (FOINS 245)

  • Victor de Lafuente

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: All procedures were approved by the CINVESTAV Institutional Animal Care and Use Committee (#0034-13)

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Publication history

  1. Received: August 16, 2018
  2. Accepted: November 16, 2018
  3. Accepted Manuscript published: November 19, 2018 (version 1)
  4. Version of Record published: December 13, 2018 (version 2)


© 2018, Fonseca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,851
    Page views
  • 282
  • 13

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Casey Paquola et al.
    Tools and Resources Updated

    Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is ‘BigBrain’. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, ’BigBrainWarp’, that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

    1. Neuroscience
    Gabriella R Sterne et al.
    Tools and Resources Updated

    Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.